University of

Nottingham

UK | CHINA | MALAYSIA

Computer Engineering and Mechatronics MMME3085

LABORATORY EXERCISE 1:
INTERFACING OF ANALOG SIGNALS,
SENSORS, AND ACTUATORS

OBJECTIVES

Objectives of this laboratory are:

e To provide practical experience of interfacing a variety of signal sources and sensors to the Arduino
Mega 2560 using various peripheral boards

e To give further experience of using the Arduino’s dialect of the C language

e To provide experience of the interfacing of a servo motor and incremental encoder using an H bridge,
the LS7366R up/down counter and the Arduino itself

e To enable students to see in practice the waveforms associated with pulse width modulation and
quadrature encoding

e To give a “sneak preview” of the use of finite state machines and of the use of interrupts

SAFETY

In practice this is a low hazard laboratory, but it does involve the rotating shaft on a small motor. To avoid any
risk of entrapment, sleeves should be rolled up and long hair tied back. No personal protective equipment is
required.

UNDERSTAND THE LAB KIT

A labelled picture of the lab exercise setup is shown in Figure 1. The Lab Kit has been developed to make it
very easy for you to set it up, and the focus is on understanding the methodology and process. Consequently,
all connections between different sensors/buttons/peripherals and the Arduino are facilitated via a custom
wiring hereness with mating plugs and sockets. This is different from the “take-home” kits where the skill to
develop your own electrical circuit using breadboard and jumper wires is important.

University of
Nottingham

UK | CHINA | MALAYSIA

Computer Engineering and Mechatronics MMME3085

Breadboa— DC Servomotor
USB Cable DC Servomotor

Stepper
\ Motor .‘r Driver (H-bridge)

o

Power Supply
Leads

Counter Click
Board
Arduino Shield Arduing »
Stepper Power Supply
Motor Driver Temperature Connection
Sensor Board

Figure 1 All components in the Lab-Kit

pper Motor Driver
ntrol (comes from Stepper Motor

CONN-E on Arduino) Supply (goesto Stepper Motor Servomotor
Stepper Motor) Driver Control Driver Control
(CONN-E) (CONN.D)

NOTE — Red tape!

[} Temperature
Sensor Connector
(CONN-C)

Figure 2 Description of Connectors in the Lab Kit

USB Cable — Used to connect the Arduino with your laptop or PC.
2. Arduino — Microcontroller device that you can program to do various things.
Arduino Shield — Hardware interface that has been specifically developed to work for these
experiments. All connections you require to make with the Arduino (for these experiments) can be
made via connectors (no bread board and jumper wires!). The Shield slots on top of the Arduino.
4. Counter Click Board — Daughter board required to measure shaft rotation speed. This board slots on
top of the Shield.
Stepper Motor — Motor for applications where precise control of shaft angle position is required.
Stepper Motor Driver — Produces the signals to drive the stepper motor.
Breadboard — Prototyping board using jumper wires. You will not require this for your experiments.

N,

DC Servomotor — General purpose motor for cheap and low power applications where position of the
shaft is controlled via closed-loop feedback mechanism.

9. DC Servomotor Driver (H-Bridge) — Controls the DC Servomotor. A constant DC voltage across the
motor’s terminals would also spin the motor, but you cannot control direction or torque produced.
The H-Bridge allows that.

Computer Engineering and Mechatronics MMME3085 University of

Nottingham

UK | CHINA | MALAYSIA

10.

Temperature Sensor Board — Daughter board with a thermistor and connection for a thermocouple.
11.

Power Supply Connection — DC power supply leads should be screwed in these terminals. Care must
be exercised with the polarity (i.e., red lead goes with the red connection point).

Power Supply Leads — The leads to power the lab kit (using the programmable power supply unit
available for the experiments).

12.

Counter Click Board

Arduino Shield

Arduino

Figure 3 Three boards (Arduino + Arduino Shield + Counter Click Board) together

University of

Nottingham

UK | CHINA | MALAYSIA

UNDERSTAND AN OSCILLOSCOPE

Computer Engineering and Mechatronics MMME3085

Figure 4 GW-INSTEK GDS-1022 Digital Storage Oscilloscope

WHAT IS IT?

An oscilloscope is an instrument to measure, visualise and record a voltage signal. It has a probe that is
required to be connected to the source of voltage (it may be the output of an electronic circuit you have
designed or something as simple as an AA-size battery!) and the oscilloscope “set” to read the signal. Usually
there are multiple channels (or signals to probe) that can be visualised simultaneously, and some simple
mathematical functions done live. The speciality of an oscilloscope (compared to other similar voltage
measurement devices like a digital multimeter) is its ability to visualise the signal over a time duration (not just
an instantaneous measurement) and record it on a USB stick.

WHY DO YOU NEED IT?

Unlike engineers from other disciplines, electrical and electronic engineers cannot “see” the output of their
physical circuits and systems (needless to say, its crucial to be able to see what you have created, is it behaving
how you expect it to and if not, what bit needs modifying). An oscilloscope usually goes hand in hand with the
design and build of any circuit as it allows you to visualise and record the input and output signals.

Computer Engineering and Mechatronics MMME3085 University of

Nottingham

UK | CHINA | MALAYSIA

- [| channel1

U; "]

Channel B probes

— ——

Differential Probes — These measure voltage

- Channel A pr:
across two points, i.e., V,.; — ANRELEIPNY s

VBiack

Figure 5 Details of an oscilloscope

THE AXES — HORIZONTAL (TIME) AND VERTICAL (VOLTAGE AMPLITUDE)

O WO | R OO

Figure 6 Standard square wave shown on both channels

The information bar at the bottom gives essential information to understand the magnitudes of the visualised
signal (Figure 6). The screen is divided in 10 divisions on both axes (illustration not accurate) and the 1%
number depicts the signal voltage per sub-division. The second number depicts the time per sub-division, i.e

University of
Nottingham

UK | CHINA | MALAYSIA

Computer Engineering and Mechatronics MMME3085

the entire axis is 10x of this value. The third number is the frequency of triggering (read more about triggering
in the next section) of the signal and can be interpreted as the frequency of the signal itself.

)

o BN
[« .

(O
v

dh Wil ©

X-Axis Scale

Figure 7 "Scale" functionality (Large knobs) for two channels (Y Axes) and time (X Axis)

The dial knobs called SCALE (both axes) are used to make the visualised signal smaller or larger on the display
area (Figure 7). The two channels have their individual Y-Axis scaling dials, but they are both on the same X-
Axis, i.e., time axis, and hence there is only one X-Axis scale dial. This means both channels would scale on the
time-axis.

)

« »,

iy

Ko
X-Axis Pos

Figure 8 "Position" functionality (Small knobs) for two channels (Y Axes) and time (X Axis)

POSITION dials can be used the move the visualised signal up, down, left, or right. This is very useful when you
want to compare two channels visually, you can align them as you want or overlap them on top of each other.

TRIGGERING

University of

Nottingham

UK | CHINA | MALAYSIA

Computer Engineering and Mechatronics MMME3085

This is a bit complicated to understand in the first go, but once you have grasped the concept it is very
straightforward. The way an oscilloscope works, it rapidly clicks “snapshots” of the signal (for the entire
duration as you have set up using the X-Axes). Now we need to tell the oscilloscope at what instances should it
click these snapshots. This is done using the TRIGGER Level and Menu functions. You can tell the oscilloscope

to continually detect for “Falling Edge” (selected from the Trigger Menu) at a particular trigger voltage “Level”
(set using the dial), e.g., OV.

‘ Horizontal Position ‘

Vertical Position ‘ 4

\ ‘ Trigger Level

Trigger Menu:
Falling Edge

Figure 9 "Triggering" functionality
AUTOSET BUTTON

This is a very useful function; it automatically sets all the above settings to produce a usable display of the
input signals.

University of
Nottingham

UK | CHINA | MALAYSIA

Computer Engineering and Mechatronics MMME3085

EXERCISE 1 — INTERFACING WITH DIFFERENT SENSORS

1. Go to the last page of this document and read all the questions you need to answer for the
coursework submission. Keep them in the back of your mind while performing the exercises.
2. Have a good look at the Arduino Shield (see Figure 10). Notice there are 5 sockets on this board (we
will go through which connector to use for each socket as we go through the experiment):
a. CONN-A - This connects to the DC servomotor (position sensor — encoder)
b. CONN-B — This connects to the Counter Click Board
c. CONN-C - This connects to the Temperature Sensor Board
d. CONN-D — This connects to the DC servomotor Driver (H-Bridge)
e. CONN-E — This connects to the Stepper Motor Driver

CONN-B CONN-E

CONN-A

CONN-C
CONN-D

Figure 10 All sockets in the Arduino Shield (CONN-A to CONN-E — relates to Figure 2)

3. Connect the Arduino Shield with the Arduino (see Figure 11 — IF IT IS ALREADY DONE, SKIP THIS
STEP):

a. Align the appropriate pins (on the bottom of Arduino Shield) and sockets (on the top of
Arduino)

b. Press them down lightly and steadily, do not force

c. Do not press the pins all the way into the sockets (see “after” picture below)
Please exercise utmost caution in this process, you may accidentally bend a pin if all pins
are not aligned properly!

e. Please seek a demonstrator to check this if you find resistance while connecting them
together.

University of

Nottingham

UK | CHINA | MALAYSIA

Computer Engineering and Mechatronics MMME3085

After Connection (do not press all the way)
—

Arduino & Arduino Shield (separate)

Rear View

Figure 11 Steps to connect the Arduino and Arduino Shield

Place the Arduino in the middle of the lab kit (in between the breadboard and DC Motor Driver).

5. Using the small screwdriver provided in your experiment kit, wire up the thermocouple to the
temperature sensor board, ensuring that the red lead is connected to + and the white lead to — on
the green terminal block. Take care not to over-tighten as the terminal block and its attachment to
the board are quite fragile.

6. Connect the multicolour 4-wire cable (coming from the Temperature Sensor Board — see picture
below) connector to CONN-C on the Arduino Shield. Do not connect anything else (CONN-B may be
left connected to the Counter Click Board).

= \\Ther couple
r'\ \ con::@w

~' Temperature
Sensor Board

CONN-C connected
with Temperature

Sensor Board theboard

Figure 12 Hardware setup for Lab-1 Exercise-1

7. Get a demonstrator to check your wiring! It should look like Figure 12.

University of
Nottingham

UK | CHINA | MALAYSIA

Computer Engineering and Mechatronics MMME3085

8. Connect the Arduino to your PC/Laptop using the USB cable. You should see the light appear on the
Arduino. This indicates there is 5V power from the USB.

9. Load the program you have modified from TwoSensorsSkeleton.ino into the Arduino IDE; it should
have already been verified in your programming sessions. If you have not been able to get a working
code — seek a demonstrator and ask for the solution code.

10. Ensure that the correct port and board type are set by checking Tool | Board and Tools | Port.

11. Now compile and upload your program. Open the Serial Monitor from the Tools menu. You should
see the room temperature; the thermocouple temperature and the displacement displayed every
second.

Send

298.03 "~
24.88

Thermistor temperature (deg C): 24.28

Thermocouple temperature with CIC (deg C): 18.89

337

1.85

10.05

292.03

24.88

Thermistor temperature (deg C): 24.88
Thermocouple temperature with CJC (deg C): 18.39

v

Autoscroll [[] Show timestamp Newline ~ | 9600 baud ~ Clear output

Figure 13 Serial Monitor view for Lab-1 Exercise-1

12. You can test the sensor by placing a finger on the thermistor (it is the blue “bulb” like feature on the

Temperature Sensor Board — see Figure 14). You should see the temperature rise on the Serial
Monitor.

Figure 14 Location of on-board thermistor on Temperature Sensor Board (and how you can test it by placing your finger)

13. You may test the thermocouple by placing it near the exhaust vent of your PC/Laptop (see Figure 15).

10

University of

Nottingham

UK | CHINA | MALAYSIA

Computer Engineering and Mechatronics MMME3085

Thermocouple

298.29 =
25.14
Thermistor temperature (deg C): 25.14
Thermocouple temperature with CJC (deg C): 41.28

Temperature of
339 the laptop vent
1.66
8.94
298.29
25.14
Thermistor temperature (deg C): 25.14
Thermocouple temperature with CJC (deg C): 41.28

2

[Autoscroll [Show timestamp Newhne ~ | 9600 baud ~ Clear output

Figure 15 Thermocouple testing by placing it near PC/Laptop vent and display temperature rise in Serial Monitor

14. When you have finished, disconnect the Arduino from the PC.

15. Disconnect CONN-C on the Arduino Shield, Arduino USB cable from the PC/laptop, and the
thermocouple from the Temperature Sensor Board.

11

University of

Nottingham

UK | CHINA | MALAYSIA

Computer Engineering and Mechatronics MMME3085

EXERCISE 2 — PULSE WIDTH MODULATION: INTERFACING WITH A SERVOMOTOR

DC Servomotors of different types are widely used for positioning, for instance within machine tools and
robotics. Unlike stepper motors, which (if desynchronisation and resonance do not occur) will move under
open-loop control to a defined position and will stay there, servomotors rely on closed-loop control to achieve
the desired position:

e Actual position is measured continuously and compared with the desired position.

e The difference (error) is used via a control algorithm (decision-making process) to determine the
corrective action, typically in the form of a voltage or current which is fed into the motor.

e The current flowing through the motor results in a torque which causes the motor to move to correct
for the error.

This process is repeated many times a second to achieve rapid and stable response to changes in the required
position.

The interface to a servomotor requires the following:

e A means of varying the voltage and/or current fed to the motor — in the present case, this is achieved
using pulse width modulation, which (conveniently) is the form of output provided by the Arduino
when the loosely-named analogWrite () function is used.

e A means of measuring the position —in the present case, this is achieved using an incremental
encoder — this will be examined in Exercise 3, “Quadrature Encoder Decoded”.

Within this lab, you will examine the forms of the signal going to and from the motor from this module under
open-loop conditions — within lab 2 we will explore the motor’s closed-loop behaviour in more detail.

The lab itself involves driving the motor from an L298N H-bridge driver IC (“DC Servomotor Driver”), which in
turn is powered from a power supply.

1. Go to the last page of this document and read all the questions you need to answer for the
coursework submission. Keep them in the back of your mind while performing the exercises.

2. Ensure the large bench power supply unit (PSU) is connected to the mains.

3. Switch the PSU on and ensure the ON/OFF button is in OFF. When it is OFF, the screen displays the
set-point voltage and current limits (see Figure 16).

Device
Power

Switch “Current Set (Coarse)

Voltage Set (Fine)
L N Voltage Set (Coarse)

Figure 16 Using the Power Supply Device

4. Adjust the voltage to read 5V and the current limiter to read ~0.5 A. Use the three knobs:

12

University of

Nottingham

UK | CHINA | MALAYSIA

Computer Engineering and Mechatronics MMME3085

a. Voltage Set Point — Coarse (Left)
b. Voltage Set Point — Fine (Middle)
c. Current Limit Set Point — Coarse (Right)
5. Turn ON the supply. The displays now read the actual voltage and current. The voltage should
remain around 5V, but the current should be approximately zero as no load is connected.
6. Turn OFF the output and switch off the device.
7. Ensure the Arduino is disconnected from the PC.
8. Make the following connections:
a. CONN-D (on Arduino Shield) with the “Servomotor Driver Control” connector (see
Figure 2 a few pages above — this is the plug/connector with a red tape wrapped around
the cables)
b. CONN-A (on Arduino Shield) with “Servomotor Position Sensor” connector (see Figure 2

a few pages above)

c. CONN-B (on Arduino Shield) with “Counter Click Board” connector (see Figure 3 a few
pages above)

d. Main Power Supply (bottom right of the lab kit base board) using the Power Supply
Leads (see Figure 1 and Figure 2 a few pages above — ensure polarity is correct, i.e., Red
with Red, and Black with Black — see Figure 17)

Red Lead with
Red Socket

Black Lead with
Black Socket

Figure 17 Polarity matching when connecting Power Supply

9. Get a demonstrator to check your wiring! It should look like Figure 18.

13

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

University of

Nottingham

UK | CHINA | MALAYSIA

Computer Engineering and Mechatronics MMME3085

CONN-D connected
with DC Servomotor Main Power Supply
Driver Control connected (with

correct polarity)

=

CONN-B <
connected wit . *!
Counter Click _# { CONN-A connected
Bard with Servomotor
Positio; Sensor

Figure 18 Hardware setup for Lab-1 Exercise-2

Connect the Arduino to your PC/Laptop using the USB cable. You should see the light appear on the
Arduino. This indicates there is 5V power from the USB.
Turn ON the PSU and turn ON its output. Ensure you start at 5V.
Load the program you have modified from MotorEncoderSkeleton.ino into the Arduino IDE; it should
have already been verified in your programming sessions. If you have not been able to get a working
code — seek a demonstrator and ask for the solution code.
Ensure that the correct port and board type are set by checking Tool | Board and Tools | Port.
Now compile and upload your program. Open the Serial Monitor and check the box in the bottom
right-hand corner of the monitor reads “Both NL and CR” to ensure that your program will understand
when a line of text has been sent.
Type different values of PIWM duty cycle percentage in the range -100 to 100 into the input field. The
motor should run forward or backwards for positive and negative values. You now have a working DC
Motor with variable torque and interchangeable direction!
It would be very interesting to see the voltage waveform output from the H-Bridge (Motor Driver). In
order to do this, we shall use an Oscilloscope! Please revisit Figure 4 to Figure 9 above to understand
how an oscilloscope works.
Make the following connections to read the signal on the oscilloscope:

a. OUT1 on the H-Bridge (bottom edge of the Driver Board to the left) with CH1 Signal

(Red crocodile clip) via a jumper cable
b. OUT2 on the H-Bridge (bottom edge of the Driver Board to the left) with CH1 Reference
(Black crocodile clip) via a jumper cable

Ensure that the scope is switched on and set to 5V/div sensitivity on Channels 1 and 2 and 0.5 ms/div
on the time base.
Get a demonstrator to check your wiring! The final setup should look like Figure 19. (If you do not
understand how to operate the oscilloscope, ask a demonstrator).

14

University of

Nottingham

UK | CHINA | MALAYSIA

Computer Engineering and Mechatronics MMME3085

i

& CH1 (Red) connected to OUT1
CH1 (Black) connected to OUT2
ST o‘.«:—:-;',:,,.-..r___ > “ = P

<=

Jumper wires to
“tap” into the H-
Bridge outputs

Figure 19 Hardware setup for Lab-1 Exercise-2 (after probing)

20. Connect the Arduino to your PC/Laptop using the USB cable. You should see the light appear on the
Arduino. This indicates there is 5V power from the USB.

21. Load the program you have modified from MotorEncoderSkeleton.ino into the Arduino IDE; it should
have already been verified in your programming sessions. If you have not been able to get a working
code — seek a demonstrator and ask for the solution code.

22. Switch the PSU on and ensure it is activated by pressing the small button to lock it in. Ensure you start
at 5Vv.

23. Open the Serial Monitor and ensure that the box in the bottom right-hand corner of the monitor
reads “Both NL and CR” to ensure that your program will understand when a line of text has been
sent.

24. Type different values of PWM duty cycle percentage in the range -100 to 100 into the input field. The
motor should run forward or backwards for positive and negative values. Sketch carefully the
waveforms on channels 1 and 2 of the scope (which are the signals seen by each side of the motor
with respect to ground) and the math trace (which is the potential difference across the motor) for
(say) 60% and -60%. You will need to draw these neatly on your answer.

25. Now increase the PSU voltage up to 15V for higher speed. Do not go higher than that, you may blow
up the H-bridge. Observe the traces again.

26. When finished, close the monitor, switch off the PSU and disconnect the Arduino but do not
disconnect anything else.

15

EXERCISE 3 — QUADRATURE ENCODER DECODED

University of

Nottingham

UK | CHINA | MALAYSIA

Computer Engineering and Mechatronics MMME3085

After having set up the DC motor, the “servo” functionality (i.e., using closed-loop circuit to control the angular
position of the motor shaft is called servomotor) shall be setup in this exercise. Notice that the DC motor has a
motor position sensor (called an “encoder”) attached to its non-shaft end. This sensor provides the angular
position of the motor shaft that can be used to “close the loop”.

1. Go to the last page of this document and read all the questions you need to answer for the
coursework submission. Keep them in the back of your mind while performing the exercises.

Ensure the power supply is switched off.
3. You should already have CONN-B connected to the Counter Click Board connector and CONN-A
connected to the “Servomotor Position Sensor” connector (see Figure 18 from previous exercise).
4. If all the connectors (CONN-A, CONN-B, and CONN-D) are connected properly, the following logic
connections have been made:

a.

S0 a0 o

Encoder Channel A connected to Counter Click Board and Arduino pin 47
(timer/counter input pin T5)

Encoder Channel B connected to Counter Click Board

Counter Click Board 5V supply and ground

Counter Click Board SCK (system clock) connected to Arduino pin 52

Counter Click Board CS (chip select) connected to Arduino pin 10

Counter Click Board SDI (slave data input) connected to Arduino pin 51 (MOSI —
Master Output Slave Input)

Counter Click Board SDO (slave data output) connected to Arduino pin 50 (MISO —
Master Input Slave Output)

Arduino 1 55
Mega 57| SCK
2560 50 =0
51| MOSI
5V
GND EY
COUNTER click

Figure 20 Counter Click Board logic connections (already implemented in the Arduino Shield, completed by plugging in CONN-A, CONN-

B, and CONN-D)

5. Inyour program, you would be reading the position/speed of the motor shaft in three ways:

a.
b.
C.

Using the Counter Click Board (reading via the serial communication — CLK, CS, SDI, SDO)
Using Arduino Timer to count Encoder Channel A pulses
Using your State Machine code

6. Make the following connections to read the signal on the oscilloscope (please see Figure 21):

a.

Pin 4 (Encoder Channel A) on CONN-B (yellow cable) with CH1 Signal (Red crocodile
clip) via a jumper cable

Pin 3 (Encoder Channel B) on CONN-B (white cable) with CH2 Signal (Red crocodile clip)
via a jumper cable

16

University of
Nottingham

UK | CHINA | MALAYSIA

Computer Engineering and Mechatronics MMME3085

c. Pin 5 (Encoder Ground) on CONN-B (green cable) with CH1 and CH2 Reference (Black
crocodile clip) via a jumper cable

CH1 (Red) connected to Encoder Channel A
CH2 (Red) connected to Encoder Channel B
CH1/CH2 (Black) connected to Ground

Figure 21 Hardware setup for Lab-1 Exercise-3 (after probing)

Get a demonstrator to check your wiring to avoid expensive damage!

Connect the Arduino to your PC/Laptop using the USB cable. You should see the light appear on the
Arduino. This indicates there is 5V power from the USB.

You should already have the working code loaded onto your Arduino from the previous exercise. If

not, load the program you have modified from MotorEncoderSkeleton.ino into the Arduino IDE; it

17

10.

11.

12.

13.
14.

15.

16.

University of

Nottingham

UK | CHINA | MALAYSIA

Computer Engineering and Mechatronics MMME3085

should have already been verified in your programming sessions. If you have not been able to get a
working code — seek a demonstrator and ask for the solution code.

Enter values 100 (to run motor fully forward) or -100 (fully in reverse) and see whether the encoder
counts recorded by your state machine program agree with the values from the LS7366R hardware
counter on the Counter Click board. Do you get any errors recorded? Note that your state machine
code “polls” (looks at) the encoder inputs every time the Loop () code executes, which is at a rate
determined by software. Can you identify any reason why the microprocessor might miss long
sequences of encoder pulses even though not many errors are recorded?

You should also note that the internal counter (using Timer 5, counting pulses received on pin 47) on
the Arduino is giving a count value that should be a quarter of the value from the hardware counter.
Does that behave as expected at high-speed running?

Carefully observe the way the numbers are changing when the motor is running forward and when it
is running backward. What is different between the two?

How does the error look like at higher speeds? Is it different compared with lower speeds?

BONUS: Now comment out the line updateEncoderStateMachine () in loop () and
uncomment the following two lines in setup () :

attachInterrupt(digitalPinToInterrupt (channeld),
updateEncoderStateMachine, CHANGE;

attachInterrupt(digitalPinToInterrupt (channelB),
updateEncoderStateMachine, CHANGE;

These call the updateEncoderStateMachine () function whenever there is a change of state
on channel A or channel B from the encoder — in other words, exactly when (and only when) the state
needs to change, regardless of anything else the Arduino is doing. Test this with motor PWM values
up to (say) 30%. Then try at faster and faster speeds. Do you get any errors? Does something
unexpected happen at higher speeds? Why?
When you have completed the experiment, please proceed with the shutdown procedure:
a. Disconnect the Arduino USB cable to the PC/laptop (this removes 5V supply and
immediately mitigates against any accidental shorting).
b. Switch off the PSU, disconnect the power supply leads from the lab kit using the
screwdriver.
c. Disconnect all jumper wires you used for oscilloscope probing.
Disconnect all the connectors that you plugged in on the Arduino Shield (CONN-A to
CONN-E).
e. Remove the Arduino from the Arduino Shield (exercise caution in this step, you may
accidentally bend some pins if you are not careful!).
f. Replace all components in the Lab Kit container as you found it.
g. Be careful when shutting the lid of the container, make sure no cable gets trapped.

Hope you enjoyed the session! Please work on your lab exercise and submit

on Thursday 16" November by 1500 hours

18

University of

Nottingham

UK | CHINA | MALAYSIA

Computer Engineering and Mechatronics MMME3085

COURSEWORK SUBMISSION

Well formatted and organised submission: A zip file containing the answers to your questions, ideally as a
PDF, including listings of the programs you have written and submitted as preparatory work, including any
corrections made in class. Also please include in the zip file all the programs themselves as Arduino source
(.ino) files. [20 marks].

Questions (please limit each answer to a single side of an A4 page — maximum size of submission should not
be more than 6 pages):

1. The temperature sensor kit (thermocouple and thermistor daughter board) has a 3.3V amplifier, i.e.,
the output voltage is between 0 and 3.3V for the complete range of detected temperature (equation
4 in the programming lab sheet). Why do we still use 5V as the Vref when we convert the ADC-
converted value back to it analog value (equation 1 in the programming lab sheet)? Why is this not
the most optimum use of the ADC pin and how can we increase the resolution of the detected signal?
[10 marks].

2. Paste camera clicks of the PWM waveform (oscilloscope readings) as you observed in exercise 2 for
the following duty cycle settings: 10%, 25%, 50%, 75%, 100%. What is the distinction between 100%
PWM and all others? Clearly mark which region is the ON region and which region is the OFF region.
Why is the voltage not zero in the OFF region? [10 marks].

3. Sketch the switch configuration for ON and OFF regions in the H-bridge circuit diagram below. What is
the difference between ON (positive) and ON (negative)? What is the PWM frequency by default in an
Arduino? What is the frequency of the audible note that we hear? Please provide evidence through
the oscilloscope readings of the PWM waveform. [10 marks].

iVsuppIy iVsuppIy iVsuppIy
Swi1

sw1 ’) sw1 ’)

4. Paste camera clicks of the quadrature signals (oscilloscope), when running in the positive and
negative directions. Remember to mark the zero voltage datum marks. [10 marks].

5. Although it only counts a quarter of the pulses (as it only looks at rising edges of one pulse train, not
all four transitions per cycle) the internal counter (Timer 5 configured to count pulses on pin 47)
seems very reliable, at least under some circumstances. Could this be used as an alternative to the
LS7366R quadrature decoder? Explain your reasoning. [10 marks].

6. When you implemented your quadrature decoder coding to run as software on the Arduino, what

shortcoming did you observe? Can you identify what the program might be doing when this problem
occurs? [10 marks]

