Programming exercise 1 Computer Eng & Mechatronics

Department of Mechanical, Materials and Manufacturing Engineering

r The Uniyersitgof
A | Nottingham

Computer Engineering and Mechatronics MMME3085

Laboratory Exercise 1: Overview and Preparatory
Programming Assignment

1 Introduction

The overall objectives of this laboratory are:

To provide practical experience of interfacing a variety of signal sources
and sensors to the Arduino Mega 2560 using various peripheral boards

To give further experience of using the Arduino’s dialect of the C language
To provide experience of the interfacing of a servo motor and incremental
encoder using an H bridge, the LS7366R up/down counter and the Arduino
itself

To enable students to see in practice the waveforms associated with pulse
width modulation and quadrature encoding.

To give experience of the use of finite state machines and of the use of
interrupts

This laboratory is in five parts:

Rev M

Interfacing to different sensors: you will construct for yourselves the
software interfaces to two different types of analogue sensors: a
thermistor and a thermocouple (which you will also use in conjunction
with the thermistor).

PWM and H bridges: this introduces the use of the L298 module to drive
a servomotor. This uses a timer-counter to generate the variable-width
pulses which drive the motor with varying effective voltages. You will use
an oscilloscope to view the resulting waveform, and see how it varies as
the motor speed is altered.

Quadrature decoded: this uses the same motor control program, but
additionally involves viewing the quadrature pulses from the encoder
which provides the position feedback information from the servomotor.
Eventually you will get to try out your own quadrature decoder program
with the actual quadrature signal, and compare the results you get with
those from a hardware decoder. You will also see how different
approaches to calling the decoder behave when time is in short supply.

1 25 September 2023



Programming exercise 1 Computer Eng & Mechatronics

2 Background

This laboratory introduces three types of sensor, two analogue and one digital.
a) The thermistor is a resistor whose resistance changes with temperature.
Those used for temperature measurement have a negative temperature
coefficient (their resistance reduces with temperature). They are well
suited to measuring room temperature and are used in things like
electronic thermometers.

b) The thermocouple consists of a pair of wires of dissimilar materials (the
one you will use is K-type, made from two alloys called chromel and
alumel. The thermocouple produces a small EMF (a few millivolts) which
is approximately proportional to the temperature difference between the
temperatures of the two junctions of the wires. In principle one of these
junctions is held at 0°C and the other is used for measuring temperature.

Thermocouple EMF vs temperature Metal 1

60

/
50 < @
ul |

[
Hot junction Metal 2 5 5Nsn e
& <J <J
. /

B
o

EMF (mV)
w
o

Cold junction

Container of melting ice
0 (simulated in practice via cold

0 200 400 600 800 1000 1200 1400 i H H
Temperature (deg C) junction compensation)

As it is inconvenient to maintain the “cold” junction at 0°C, this
temperature is simulated by adding to the actual EMF a value of EMF
associated with the cold junction’s true temperature, measured otherwise
(for example using a thermistor). This is known as cold junction
compensation. The calibration curves relating EMF to temperature, and
temperature to EMF, are typically given by special functions approximated
as polynomials (*"NIST polynomials”).

c) The incremental rotary encoder, which can take various forms but is
typically a circular disc with slots, through which light shines onto two
detectors (called Channel A and Channel B). These are aligned so that as
the disc rotates, it causes the light detectors to be activated in such a way
that they generate a pair of square waves which are a quarter of a wave
(90°) out of step with each other. These waves are said to be in
quadrature. The sequence in which the signals from the two detectors go
high and low indicates the direction in which the disc is rotating.

Rev M 2 25 September 2023



Programming exercise 1 Computer Eng & Mechatronics

Forwards (countmg up)

‘

Backwards(countlng down)

'

A special form of counter (an up-down counter or quadrature decoder) is
required to count the pulses so that the total number of pulses increments
or decrements as required, thus indicating the overall angle through which
the encoder has rotated. Incremental rotary encoders are widely used in
conjunction with motors to determine how far the motor has rotated.

Two of the sensors considered here (thermistor and thermocouple) produce their
output in analogue form i.e. as a varying voltage related, either linearly or
nonlinearly, to the quantity they are measuring (temperature). In order to take
readings of these values using a computer, it is necessary to convert them to
digital form. You have already covered various analog-to-digital converters in
the module Electromechanical Devices (MMME2051). The Arduino includes such
a device which can be switched (multiplexed) to various analogue inputs. This
particular ADC has a resolution of 10 bits, meaning that its output is a 10-bit
binary number in the range 0 to 1023; thus it is important to note that the
function analogRead() does NOT produce a value equal to the voltage input
being digitised, but an integer number which must be converted to the voltage.

3 Apparatus

This laboratory is based around the Arduino Mega 2560, which is essentially a
user-friendly board on which is mounted the AVR Atmega2560 microcontroller
chip. You will be using it with:

e The Mikroelektronika Counter Click board, which is effectively a carrier
board for the LS7366R up/down counter which is interfaced to the Arduino
using the SPI serial protocol

e The Grove High Temperature Sensor board which includes a thermistor
(temperature-dependent resistor) which can be used for measuring
changes in ambient temperature, but also includes an interface to a K-
type thermocouple which can be used for measuring temperatures in the
range —200 °C to +1350 °C provided the thermistor is used for cold
junction compensation. The board also includes signal conditioning and
amplification circuits.

e A DC motor with optical encoder, used for producing (and measuring)
mechanical rotation.

Rev M 3 25 September 2023



Programming exercise 1 Computer Eng & Mechatronics

e A L298 H-bridge circuit mounted on a board, used for switching the motor
on and off rapidly in forward and reverse directions.
e A variable voltage benchtop power supply with current limiter.

4 Preparatory exercises

4.1 Interfacing to different sensors

Start by creating a program to test the formulae, constants etc. that you will use
in your Arduino program. There is a program, TwoSensorsSkeleton.c, on
Moodle which gives a starting point. Copy this into a folder in VSCode.

There are two functions already defined for use in the thermocouple code,
described in section d below.

Use scanf to read in two values between 0 and 1023 to simulate the value
being read from the ADC for each of the inputs A0 and Al on the Arduino. The
thermocouple is input from AO and the thermistor from Al. (In the Arduino
program used in the lab these values will be read using the analogRead
function.)

For input values of 256 you should get the following results: thermistor
temperature = 14.33°C, thermocouple temperature =416.97°C. If you don’t get
these, check your formulae.

You will need to write some code to interface the different sensors, coding up
the conversions relating to the following situations. Hint: as good programing
practice, use constants defined at the start of your program to represent
numeric values (e.g. pin numbers, V.) to avoid the use of numbers in formulae
or elsewhere where there meaning is obscure (often known as “magic
numbers”).

a) Converting ADC value to voltage
In each case the sensor produces a voltage in the range 0-5 V which is
converted via the Arduino’s built-in analog-to-digital converter (ADC) to a
number in the range 0-1023. It is this integer value which is returned
when you call analogRead. According to the Atmega2560 datasheet:

Nape XV,
VADC = % (1)

where Vier=5V and napc is the numeric value from the ADC in the range 0-
1023. For example, when the value returned by the function call
analogRead (A0) is 256 the voltage on pin A0 is 1.25 V.

Rev M 4 25 September 2023



Programming exercise 1 Computer Eng & Mechatronics

Write a function which converts the ADC value to the voltage as you will
need to perform this task twice and you don’t want duplicate code.

b) Thermistor
It can be shown that the resistance R of a thermistor is related to the
absolute temperature T by the following equation:

R= ROeB[TlTlo] (2)

where Tp is 298.15 K (i.e. 25 °C) and in the present case Ro (the
resistance at 25 °C in kQ) is 10 kQ and B is 3975 K. This expression can
be rearranged to give the temperature in K in terms of the resistance:

-1
ro[L,ln(R )
T, B R,
So, to obtain the temperature in °C you will need to subtract 273.15 K.
The signal conditioning circuit for the thermistor is shown below

(simplified from the Seeed Grove High Temperature Sensor
documentation):

3.3V ]_
Thermistor J v
TTC3A103*39H }/

10 kQ

I

The resistance ca|:1 be related to the output voltage V as follows:

R (k) =233 1o (4)

Write code to calculate the thermistor temperature in degrees C, given an
ADC input value between 0 and 1023.

e (i) Convert the ADC value to voltage using the function created in

the previous section.

e (ii) Convert this voltage to resistance using equation (4)

e (iii) Convert the resistance to temperature in K

e (iv) Write a function to convert degrees K to C

e (v) Convert the temperature in K to C using the function
These kinds of calculations are typical if you are coding up your own
interfacing code.

Rev M 5 25 September 2023



Programming exercise 1 Computer Eng & Mechatronics

c) Thermocouple
The EMF (voltage) given by a thermocouple is approximately proportional
to the temperature difference between the “hot” junction (where
temperature is being measured) and the “cold” junction, which ideally is
held at 0 °C. In practice of course the cold junction is at room
temperature, so the actual room temperature must be measured
independently and used for compensating the temperature measurement
from the thermocouple.

In practice it is not quite as straightforward as might be imagined.
1. The thermocouple EMF is too small to be measured directly and could
be outside the range of the ADC, so some signal conditioning circuitry

is needed.
1.5V
150 k@ 1kQ 51kQ 2.4 kO
f:I—'_' ]
82 kQ —
Thermo- - Vv
couple 1 kQ

L +
10 kQ

From the circuit diagram?! above (again greatly simplified from the
Grove documentation) it can be concluded that the thermocouple
voltage Ercis related to the circuit output voltage V (which is the ADC
input voltage for the thermocouple) as follows:

(Vv -0.35)
- o) 5
© 544 2
This is the “raw” thermocouple voltage before any cold junction
compensation.

2. To compensate for the actual temperature of the cold junction (which
is of course actually at room temperature Trr, @ compensation voltage
must be added by converting the actual cold junction temperature to
the EMF (in millivolts) which would arise from a thermocouple with its
“hot” junction at room temperature and its “cold” junction at 0°C. This
compensation EMF E.mp can be calculated using the (very
complicated!) “forward” function which relates EMF in millivolts to
room temperature Trr in °C:

Ecomp = I:forward (TRT) (6)

1 The manufacturer’s schematic gives the very slightly different amplifier gain of of
54.15; use the value 54.4 as that is obtainable using the operational amplifier
calculations you already know.

Rev M 6 25 September 2023



Programming exercise 1 Computer Eng & Mechatronics

The actual temperature of the hot junction can then be calculated
using the “inverse” function which relates temperature to
(compensated) EMF:

TTC = (ETC + Ecomp) (7)

I:inverse

So in order to calculate the actual temperature of the hot junction the
temperature of the cold junction must first be found using the
thermistor (as above), making sure that this is in °C. This is then
converted into a compensation EMF, this is added to the thermocouple
EMF (which in turn is found from the ADC value using equation (1) and
the ADC voltage using equation (6)) and is finally converted to
temperature using equation (7).

In practice, all these calculations would be performed within ready-
written software such as the software library? provided with the Grove
board. It is however instructive to perform these calculations for
yourselves. To make life much easier for you, the forward and inverse
functions (used in equations (6) and (7) above) are given to you in the
file TwoSensorsSkeleton.c (and also in the corresponding .ino file) in
the following form:

float NISTdegCtoMilliVoltsKtype (float tempDegC) // returns
EMF in millivolts: forward TC function

float NISTmilliVoltsToDegCKtype (float tcEMFmV) // returns
temp in degC assuming 0 degC cold jcn: inverse TC function

Write code to calculate the temperature at the hot junction in degrees C,
given an ADC input value between 0 and 1023.

e (i) Convert the ADC value to voltage using the function created
earlier

e (ii) Calculate the thermocouple voltage using equation (5)

e (iii) Convert the thermistor temperature calculated earlier into a
compensation EMF using equation (6)

e (iv) Calculate the temperature using equation (7)

2 Please don't be tempted just to copy the code from the Grove library, if you can find it.
That code does things a significantly different way from that proposed here; it gives
more or less the same answers but I'd prefer you to do it *"my way”. And I don’t want
you to be committing plagiarism!

7 25 September 2023



Programming exercise 1 Computer Eng & Mechatronics

Programming tips

Experience shows that this exercise holds significant traps for the unwary and
inexperienced programmer, notably the “integer divide” trap (which, for example
would evaluate 1/2 as 0 as it has a zero integer part). These traps can be
avoided as follows:

e Be very careful with units - don’t confuse °C with K, or mV with V.
Remember to make the necessary conversions.

e Never divide by an integer e.g. don’t put use an expression such as
30/5*Vv as it will not evaluate correctly; 30.0/5.0*v will be OK. Even
better, define constants as (for example) const float Vref=5.0; which
provides a double safety net to avoid such a variable being treated as an
integer and will force you to think about the data type. Defining them as
integers, or just using integers within the formulae where these constants
appear, will lead to incorrect results.

¢ Remember that serial output statements on the Arduino are quite unlike
printf () and format descriptors simply don't work in Serial.print() or
Serial.println(). Use printf() in the C example. When transferring
to the .ino Arduino program there are some strong hints on how to
present the serial output in the skeleton file.

When your ¢ program is working and giving the correct output for the test values
save it as TwoSensorsXXX.c where XXX is your initials. Save a screenshot of
the terminal window output with test values of 256.

Next transfer your tested functions and calculations into the
TwoSensorsSkeleton.ino file. This gives a good framework for a timed loop as
well as an infrastructure for displaying your results.

Use the following inputs with the analogRead () function to obtain the input
values (replacing the scanf statements that you had in your c test code):
Thermistor: Analog input 1 (pin Al)
Thermocouple: Analog input 0 (pin AQ)

e You can test the program with the Arduino by temporarily replacing the
analogRead () statements with a hard-coded value of 256 and checking
that you get the results above(but don’t forget to reinstate the
analogRead () statements when you have finished!).

When you are comfortable that your coding is correct (and with the
analogRead () functions re-inserted!) , make sure the correct version is present
in the Arduino code, and save it as TwoSensorsXXX.ino where XXX is your
initials.

Rev M 8 25 September 2023



Programming exercise 1 Computer Eng & Mechatronics

4.2 Quadrature Decoded: a simple application of a state machine
architecture

The incremental encoder described earlier is a method of measuring angular
rotation, and generates a pair of trains of pulse which are 90° out of phase with
each other. This is known as a quadrature signal, and allows the direction to be
determined from the sequence of rising and falling edges of the waveforms on
the two channels A and B:

A - L
5 . L

Rotation in positive direction Rotation in negative direction

Interpreting these signals is not just a matter of counting the pulses - the
direction must be taken into account. One approach to this is to use a specialist
counter chip as will be demonstrated during the laboratory.

Quadrature Serial or parallel
pulses data
JUILT | Hard- :
ware Serial or | /52ta bus
2o parallel on uP
interface

However, an alternative approach is to use a program based on a “finite state
machine” (usually known simply as a “state machine”), which considers the
different states (in this case, the four possible combinations of channels A and B
being high (1) and low (0)) and the transitions from one state to the next These
can be represented in a state transition diagram, which describes how each
transition can correspond to either incrementing or decrementing the counter
giving the position relative to the
starting point.

412341

B
Timing diagram showing State transition diagram showing how the
the four different states transitions from state to state relate to

incrementing or decrementing the counter
and error counter

Rev M 9 25 September 2023



Programming exercise 1 Computer Eng & Mechatronics

A typical state machine program in C involves a continuously-repeating loop in
which there is a switch statement with four cases: each corresponds to the one
possible current state of the system, and contains the decision-making process
which decides on the action (incrementing or decrementing the counter and the
error count) and the new state arising from the newly-read inputs from the
encoder. For example, if we are currently in state 1 then read the inputs on A
and B, the newly-read inputs are interpreted as follows:

e IfAis 0 andBis 0, do nothing and stay in State 1

e IfAis1andBis 0, add 1 to main counter and go to State 2

e IfAis0OandBis 1, subtract 1 to main counter and go to State 4

e IfAis1andBis 1, do nothing to main counter but add 1 to error counter

and go to state 3

We also need to initialise the state:
o Ifinitially Ais 0 and B is 0, system starts in State 1
e Ifinitially Ais 1 and B is 0, system starts in State 2
e Ifinitially Ais 1 and B is 1, system starts in State 3
o Ifinitially Ais 0 and B is 1, system starts in State 4

We will cover state machines and a typical state machine program structure in
some detail in the lectures - for the present time, concentrate on the form of the
signal and the logic required to interpret it.

Two different versions of a test program are available for you to implement and
test your logic.

e If you own an Arduino Uno or Mega, use TestEncoder.ino which enables
you to enter the values for Channel A and Channel B via the serial
monitor, and view the count (and error count).

e If you don’t own an Arduino, use TestEncoder.c which will run in
VSCode. The details of the program structure are different but the
functions for initialising and updating the state machine are the same in
each program. Be warned that to maintain compatibility with the Arduino
program structure, some poor programming practice (notably the use of
global variables) has had to be implemented. As noted previously, don't
do this in your main C programming exercises!

Before you start to write the code for the state machine draw flowcharts for the
initialiseEncoderStateMachine() and updateEncoderStateMachine() functions
to show the logic and program flow required. As state, channelAState and
channelBState variables are global variables in the Arduino program you do not
need to show initialisation of these in the flowcharts. Files showing the
flowcharts for the part of the code shown in the skeleton files are available in
Moodle. InitialiseEncoderStateMachineSkeleton.drawio and
UpdateEncoderStateMachineSkeleton.drawio can be loaded into drawio and
used as a starting point for the full flowcharts. Pdf versions of the files are also
available on Moodle. Save the finished flowcharts as a single pdf file in the form
StateMachineFlowchartXXX.pdf where XXX are your initials.

Rev M 10 25 September 2023



Programming exercise 1 Computer Eng & Mechatronics

To give you a helping hand, the enumerated constants and the integer constants
have already been defined for you in both versions of the test program.

The text description of the first state is given, along with part of the
implementation. You are on your own for the other states! Use your flowchart
to inform how you program the state machine.

When you have finished, please test the code by running it and manually
setting the A and B inputs to high and low by typing in the appropriate pairs of
digits e.g. 00, 10, 11, 01, 00. You should be able to simulate the sequence
involved in positive and negative movement by typing the appropriate pairs of
digits in and checking that the correct transitions have been made. Try some
error situations as well, e.g. 00 followed by 11. Save your work as
TestEncoderXXX.ino or .c as appropriate, where XXX are your initials.

Save a screenshot of the terminal window output with the following test data:
00, 10, 11, 01, 11, 00, 99. (Note that the ‘99’ to terminate is only required if
using the .c skeleton. It is not required if you have written the code straight into
the .ino file).

If you are confident that you have got the coding correct, copy the logic of your
test program into the Arduino sketch MotorEncoderSkeleton.ino and save it
as MotorEncoderXXX.ino. Be careful that your final version of the function
updateEncoderStateMachine includes the lines of code to read the inputs:

channelAState
channelBState

digitalRead (channeld) ;
digitalRead (channelB) ;

and that you have not accidentally deleted them!

You will need to bring your programs to the laboratory.

Finally, please create a zip file containing your work (programs, terminal window
output and flowcharts) as Lab1PrepXXX.zip and submit it online via Moodle no
later than 3pm on Thursday 26" October 2023.

Sources of information:

Grove High Temperature Sensor documentation (including schematics)
http://wiki.seeedstudio.com/Grove-High Temperature Sensor/

Atmega2560 data sheet
http://ww1l.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-
microcontroller-atmega640-1280-1281-2560-2561 datasheet.pdf

NIST thermocouple data
https://srdata.nist.gov/its90/download/type k.tab

Rev M 11 25 September 2023


http://wiki.seeedstudio.com/Grove-High_Temperature_Sensor/
http://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://srdata.nist.gov/its90/download/type_k.tab

