
 Programming exercise 1 Computer Eng & Mechatronics

Rev M 1 25 September 2023

Department of Mechanical, Materials and Manufacturing Engineering

Computer Engineering and Mechatronics MMME3085

Laboratory Exercise 1: Overview and Preparatory

Programming Assignment

1 Introduction

The overall objectives of this laboratory are:

• To provide practical experience of interfacing a variety of signal sources

and sensors to the Arduino Mega 2560 using various peripheral boards

• To give further experience of using the Arduino’s dialect of the C language

• To provide experience of the interfacing of a servo motor and incremental

encoder using an H bridge, the LS7366R up/down counter and the Arduino

itself

• To enable students to see in practice the waveforms associated with pulse

width modulation and quadrature encoding.

• To give experience of the use of finite state machines and of the use of

interrupts

This laboratory is in five parts:

• Interfacing to different sensors: you will construct for yourselves the

software interfaces to two different types of analogue sensors: a

thermistor and a thermocouple (which you will also use in conjunction

with the thermistor).

• PWM and H bridges: this introduces the use of the L298 module to drive

a servomotor. This uses a timer-counter to generate the variable-width

pulses which drive the motor with varying effective voltages. You will use

an oscilloscope to view the resulting waveform, and see how it varies as

the motor speed is altered.

• Quadrature decoded: this uses the same motor control program, but

additionally involves viewing the quadrature pulses from the encoder

which provides the position feedback information from the servomotor.

Eventually you will get to try out your own quadrature decoder program

with the actual quadrature signal, and compare the results you get with

those from a hardware decoder. You will also see how different

approaches to calling the decoder behave when time is in short supply.

 Programming exercise 1 Computer Eng & Mechatronics

Rev M 2 25 September 2023

2 Background

This laboratory introduces three types of sensor, two analogue and one digital.

a) The thermistor is a resistor whose resistance changes with temperature.

Those used for temperature measurement have a negative temperature

coefficient (their resistance reduces with temperature). They are well

suited to measuring room temperature and are used in things like

electronic thermometers.

b) The thermocouple consists of a pair of wires of dissimilar materials (the

one you will use is K-type, made from two alloys called chromel and

alumel. The thermocouple produces a small EMF (a few millivolts) which

is approximately proportional to the temperature difference between the

temperatures of the two junctions of the wires. In principle one of these

junctions is held at 0C and the other is used for measuring temperature.

As it is inconvenient to maintain the “cold” junction at 0C, this

temperature is simulated by adding to the actual EMF a value of EMF

associated with the cold junction’s true temperature, measured otherwise

(for example using a thermistor). This is known as cold junction

compensation. The calibration curves relating EMF to temperature, and

temperature to EMF, are typically given by special functions approximated

as polynomials (“NIST polynomials”).

c) The incremental rotary encoder, which can take various forms but is

typically a circular disc with slots, through which light shines onto two

detectors (called Channel A and Channel B). These are aligned so that as

the disc rotates, it causes the light detectors to be activated in such a way

that they generate a pair of square waves which are a quarter of a wave

(90) out of step with each other. These waves are said to be in

quadrature. The sequence in which the signals from the two detectors go

high and low indicates the direction in which the disc is rotating.

 Programming exercise 1 Computer Eng & Mechatronics

Rev M 3 25 September 2023

A special form of counter (an up-down counter or quadrature decoder) is

required to count the pulses so that the total number of pulses increments

or decrements as required, thus indicating the overall angle through which

the encoder has rotated. Incremental rotary encoders are widely used in

conjunction with motors to determine how far the motor has rotated.

Two of the sensors considered here (thermistor and thermocouple) produce their

output in analogue form i.e. as a varying voltage related, either linearly or

nonlinearly, to the quantity they are measuring (temperature). In order to take

readings of these values using a computer, it is necessary to convert them to

digital form. You have already covered various analog-to-digital converters in

the module Electromechanical Devices (MMME2051). The Arduino includes such

a device which can be switched (multiplexed) to various analogue inputs. This

particular ADC has a resolution of 10 bits, meaning that its output is a 10-bit

binary number in the range 0 to 1023; thus it is important to note that the

function analogRead() does NOT produce a value equal to the voltage input

being digitised, but an integer number which must be converted to the voltage.

3 Apparatus

This laboratory is based around the Arduino Mega 2560, which is essentially a

user-friendly board on which is mounted the AVR Atmega2560 microcontroller

chip. You will be using it with:

• The Mikroelektronika Counter Click board, which is effectively a carrier

board for the LS7366R up/down counter which is interfaced to the Arduino

using the SPI serial protocol

• The Grove High Temperature Sensor board which includes a thermistor

(temperature-dependent resistor) which can be used for measuring

changes in ambient temperature, but also includes an interface to a K-

type thermocouple which can be used for measuring temperatures in the

range −200 °C to +1350 °C provided the thermistor is used for cold

junction compensation. The board also includes signal conditioning and

amplification circuits.

• A DC motor with optical encoder, used for producing (and measuring)

mechanical rotation.

 Programming exercise 1 Computer Eng & Mechatronics

Rev M 4 25 September 2023

• A L298 H-bridge circuit mounted on a board, used for switching the motor

on and off rapidly in forward and reverse directions.

• A variable voltage benchtop power supply with current limiter.

4 Preparatory exercises

4.1 Interfacing to different sensors

Start by creating a program to test the formulae, constants etc. that you will use

in your Arduino program. There is a program, TwoSensorsSkeleton.c, on

Moodle which gives a starting point. Copy this into a folder in VSCode.

There are two functions already defined for use in the thermocouple code,

described in section d below.

Use scanf to read in two values between 0 and 1023 to simulate the value

being read from the ADC for each of the inputs A0 and A1 on the Arduino. The

thermocouple is input from A0 and the thermistor from A1. (In the Arduino

program used in the lab these values will be read using the analogRead

function.)

For input values of 256 you should get the following results: thermistor

temperature = 14.33C, thermocouple temperature =416.97C. If you don’t get

these, check your formulae.

You will need to write some code to interface the different sensors, coding up

the conversions relating to the following situations. Hint: as good programing

practice, use constants defined at the start of your program to represent

numeric values (e.g. pin numbers, Vref) to avoid the use of numbers in formulae

or elsewhere where there meaning is obscure (often known as “magic

numbers”).

a) Converting ADC value to voltage

In each case the sensor produces a voltage in the range 0-5 V which is

converted via the Arduino’s built-in analog-to-digital converter (ADC) to a

number in the range 0-1023. It is this integer value which is returned

when you call analogRead. According to the Atmega2560 datasheet:

1024

ADC ref

ADC

n V
V


= (1)

where Vref=5V and nADC is the numeric value from the ADC in the range 0-

1023. For example, when the value returned by the function call

analogRead(A0) is 256 the voltage on pin A0 is 1.25 V.

 Programming exercise 1 Computer Eng & Mechatronics

Rev M 5 25 September 2023

Write a function which converts the ADC value to the voltage as you will

need to perform this task twice and you don’t want duplicate code.

b) Thermistor

It can be shown that the resistance R of a thermistor is related to the

absolute temperature T by the following equation:

0

1 1

0

B
T T

R R e

 
− 

 = (2)

where T0 is 298.15 K (i.e. 25 C) and in the present case R0 (the

resistance at 25 C in k) is 10 k and B is 3975 K. This expression can

be rearranged to give the temperature in K in terms of the resistance:

1

0 0

1 1
ln

R
T

T B R

−

  
= +   

  

 (3)

So, to obtain the temperature in C you will need to subtract 273.15 K.

The signal conditioning circuit for the thermistor is shown below

(simplified from the Seeed Grove High Temperature Sensor

documentation):

The resistance can be related to the output voltage V as follows:

10 3.3
(kΩ) 10R

V


= − (4)

Write code to calculate the thermistor temperature in degrees C, given an

ADC input value between 0 and 1023.

• (i) Convert the ADC value to voltage using the function created in

the previous section.

• (ii) Convert this voltage to resistance using equation (4)

• (iii) Convert the resistance to temperature in K

• (iv) Write a function to convert degrees K to C

• (v) Convert the temperature in K to C using the function

These kinds of calculations are typical if you are coding up your own

interfacing code.

 Programming exercise 1 Computer Eng & Mechatronics

Rev M 6 25 September 2023

c) Thermocouple

The EMF (voltage) given by a thermocouple is approximately proportional

to the temperature difference between the “hot” junction (where

temperature is being measured) and the “cold” junction, which ideally is

held at 0 C. In practice of course the cold junction is at room

temperature, so the actual room temperature must be measured

independently and used for compensating the temperature measurement

from the thermocouple.

In practice it is not quite as straightforward as might be imagined.

1. The thermocouple EMF is too small to be measured directly and could

be outside the range of the ADC, so some signal conditioning circuitry

is needed.

From the circuit diagram1 above (again greatly simplified from the

Grove documentation) it can be concluded that the thermocouple

voltage ETC is related to the circuit output voltage V (which is the ADC

input voltage for the thermocouple) as follows:

(0.35)

54.4
TC

V
E

−
= (5)

This is the “raw” thermocouple voltage before any cold junction

compensation.

2. To compensate for the actual temperature of the cold junction (which

is of course actually at room temperature TRT, a compensation voltage

must be added by converting the actual cold junction temperature to

the EMF (in millivolts) which would arise from a thermocouple with its

“hot” junction at room temperature and its “cold” junction at 0C. This

compensation EMF Ecomp can be calculated using the (very

complicated!) “forward” function which relates EMF in millivolts to

room temperature TRT in C:

()comp forward RTE F T= (6)

1 The manufacturer’s schematic gives the very slightly different amplifier gain of of

54.15; use the value 54.4 as that is obtainable using the operational amplifier

calculations you already know.

 Programming exercise 1 Computer Eng & Mechatronics

Rev M 7 25 September 2023

The actual temperature of the hot junction can then be calculated

using the “inverse” function which relates temperature to

(compensated) EMF:

()TC inverse TC compT F E E= + (7)

So in order to calculate the actual temperature of the hot junction the

temperature of the cold junction must first be found using the

thermistor (as above), making sure that this is in C. This is then

converted into a compensation EMF, this is added to the thermocouple

EMF (which in turn is found from the ADC value using equation (1) and

the ADC voltage using equation (6)) and is finally converted to

temperature using equation (7).

In practice, all these calculations would be performed within ready-

written software such as the software library2 provided with the Grove

board. It is however instructive to perform these calculations for

yourselves. To make life much easier for you, the forward and inverse

functions (used in equations (6) and (7) above) are given to you in the

file TwoSensorsSkeleton.c (and also in the corresponding .ino file) in

the following form:

float NISTdegCtoMilliVoltsKtype(float tempDegC) // returns

EMF in millivolts: forward TC function

float NISTmilliVoltsToDegCKtype(float tcEMFmV) // returns

temp in degC assuming 0 degC cold jcn: inverse TC function

Write code to calculate the temperature at the hot junction in degrees C,

given an ADC input value between 0 and 1023.

• (i) Convert the ADC value to voltage using the function created

earlier

• (ii) Calculate the thermocouple voltage using equation (5)

• (iii) Convert the thermistor temperature calculated earlier into a

compensation EMF using equation (6)

• (iv) Calculate the temperature using equation (7)

2 Please don’t be tempted just to copy the code from the Grove library, if you can find it.

That code does things a significantly different way from that proposed here; it gives

more or less the same answers but I’d prefer you to do it “my way”. And I don’t want

you to be committing plagiarism!

 Programming exercise 1 Computer Eng & Mechatronics

Rev M 8 25 September 2023

Programming tips

Experience shows that this exercise holds significant traps for the unwary and

inexperienced programmer, notably the “integer divide” trap (which, for example

would evaluate 1/2 as 0 as it has a zero integer part). These traps can be

avoided as follows:

• Be very careful with units – don’t confuse C with K, or mV with V.

Remember to make the necessary conversions.

• Never divide by an integer e.g. don’t put use an expression such as

30/5*V as it will not evaluate correctly; 30.0/5.0*V will be OK. Even

better, define constants as (for example) const float Vref=5.0; which

provides a double safety net to avoid such a variable being treated as an

integer and will force you to think about the data type. Defining them as

integers, or just using integers within the formulae where these constants

appear, will lead to incorrect results.

• Remember that serial output statements on the Arduino are quite unlike

printf() and format descriptors simply don’t work in Serial.print() or

Serial.println(). Use printf() in the C example. When transferring

to the .ino Arduino program there are some strong hints on how to

present the serial output in the skeleton file.

When your c program is working and giving the correct output for the test values

save it as TwoSensorsXXX.c where XXX is your initials. Save a screenshot of

the terminal window output with test values of 256.

Next transfer your tested functions and calculations into the

TwoSensorsSkeleton.ino file. This gives a good framework for a timed loop as

well as an infrastructure for displaying your results.

Use the following inputs with the analogRead() function to obtain the input

values (replacing the scanf statements that you had in your c test code):

Thermistor: Analog input 1 (pin A1)

Thermocouple: Analog input 0 (pin A0)

• You can test the program with the Arduino by temporarily replacing the

analogRead() statements with a hard-coded value of 256 and checking

that you get the results above(but don’t forget to reinstate the

analogRead() statements when you have finished!).

When you are comfortable that your coding is correct (and with the

analogRead() functions re-inserted!) , make sure the correct version is present

in the Arduino code, and save it as TwoSensorsXXX.ino where XXX is your

initials.

 Programming exercise 1 Computer Eng & Mechatronics

Rev M 9 25 September 2023

4.2 Quadrature Decoded: a simple application of a state machine

architecture

The incremental encoder described earlier is a method of measuring angular

rotation, and generates a pair of trains of pulse which are 90 out of phase with

each other. This is known as a quadrature signal, and allows the direction to be

determined from the sequence of rising and falling edges of the waveforms on

the two channels A and B:

Rotation in positive direction Rotation in negative direction

Interpreting these signals is not just a matter of counting the pulses – the

direction must be taken into account. One approach to this is to use a specialist

counter chip as will be demonstrated during the laboratory.

However, an alternative approach is to use a program based on a “finite state

machine” (usually known simply as a “state machine”), which considers the

different states (in this case, the four possible combinations of channels A and B

being high (1) and low (0)) and the transitions from one state to the next These

can be represented in a state transition diagram, which describes how each

transition can correspond to either incrementing or decrementing the counter

giving the position relative to the

starting point.

Timing diagram showing State transition diagram showing how the

the four different states transitions from state to state relate to

incrementing or decrementing the counter

and error counter

A

B

 Programming exercise 1 Computer Eng & Mechatronics

Rev M 10 25 September 2023

A typical state machine program in C involves a continuously-repeating loop in

which there is a switch statement with four cases: each corresponds to the one

possible current state of the system, and contains the decision-making process

which decides on the action (incrementing or decrementing the counter and the

error count) and the new state arising from the newly-read inputs from the

encoder. For example, if we are currently in state 1 then read the inputs on A

and B, the newly-read inputs are interpreted as follows:

• If A is 0 and B is 0, do nothing and stay in State 1

• If A is 1 and B is 0, add 1 to main counter and go to State 2

• If A is 0 and B is 1, subtract 1 to main counter and go to State 4

• If A is 1 and B is 1, do nothing to main counter but add 1 to error counter

and go to state 3

We also need to initialise the state:

• If initially A is 0 and B is 0, system starts in State 1

• If initially A is 1 and B is 0, system starts in State 2

• If initially A is 1 and B is 1, system starts in State 3

• If initially A is 0 and B is 1, system starts in State 4

We will cover state machines and a typical state machine program structure in

some detail in the lectures – for the present time, concentrate on the form of the

signal and the logic required to interpret it.

Two different versions of a test program are available for you to implement and

test your logic.

• If you own an Arduino Uno or Mega, use TestEncoder.ino which enables

you to enter the values for Channel A and Channel B via the serial

monitor, and view the count (and error count).

• If you don’t own an Arduino, use TestEncoder.c which will run in

VSCode. The details of the program structure are different but the

functions for initialising and updating the state machine are the same in

each program. Be warned that to maintain compatibility with the Arduino

program structure, some poor programming practice (notably the use of

global variables) has had to be implemented. As noted previously, don’t

do this in your main C programming exercises!

Before you start to write the code for the state machine draw flowcharts for the

initialiseEncoderStateMachine() and updateEncoderStateMachine() functions

to show the logic and program flow required. As state, channelAState and

channelBState variables are global variables in the Arduino program you do not

need to show initialisation of these in the flowcharts. Files showing the

flowcharts for the part of the code shown in the skeleton files are available in

Moodle. InitialiseEncoderStateMachineSkeleton.drawio and

UpdateEncoderStateMachineSkeleton.drawio can be loaded into drawio and

used as a starting point for the full flowcharts. Pdf versions of the files are also

available on Moodle. Save the finished flowcharts as a single pdf file in the form

StateMachineFlowchartXXX.pdf where XXX are your initials.

 Programming exercise 1 Computer Eng & Mechatronics

Rev M 11 25 September 2023

To give you a helping hand, the enumerated constants and the integer constants

have already been defined for you in both versions of the test program.

The text description of the first state is given, along with part of the

implementation. You are on your own for the other states! Use your flowchart

to inform how you program the state machine.

When you have finished, please test the code by running it and manually

setting the A and B inputs to high and low by typing in the appropriate pairs of

digits e.g. 00, 10, 11, 01, 00. You should be able to simulate the sequence

involved in positive and negative movement by typing the appropriate pairs of

digits in and checking that the correct transitions have been made. Try some

error situations as well, e.g. 00 followed by 11. Save your work as

TestEncoderXXX.ino or .c as appropriate, where XXX are your initials.

Save a screenshot of the terminal window output with the following test data:

00, 10, 11, 01, 11, 00, 99. (Note that the ‘99’ to terminate is only required if

using the .c skeleton. It is not required if you have written the code straight into

the .ino file).

If you are confident that you have got the coding correct, copy the logic of your

test program into the Arduino sketch MotorEncoderSkeleton.ino and save it

as MotorEncoderXXX.ino. Be careful that your final version of the function

updateEncoderStateMachine includes the lines of code to read the inputs:

 channelAState = digitalRead(channelA);

 channelBState = digitalRead(channelB);

and that you have not accidentally deleted them!

You will need to bring your programs to the laboratory.

Finally, please create a zip file containing your work (programs, terminal window

output and flowcharts) as Lab1PrepXXX.zip and submit it online via Moodle no

later than 3pm on Thursday 26th October 2023.

Sources of information:

Grove High Temperature Sensor documentation (including schematics)

http://wiki.seeedstudio.com/Grove-High_Temperature_Sensor/

Atmega2560 data sheet

http://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-

microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf

NIST thermocouple data

https://srdata.nist.gov/its90/download/type_k.tab

http://wiki.seeedstudio.com/Grove-High_Temperature_Sensor/
http://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://srdata.nist.gov/its90/download/type_k.tab

