198 lines
5.9 KiB
C++
198 lines
5.9 KiB
C++
/* Test program for reading of thermistor, thermocouple and LVDT.
|
|
K-type thermocouple functions written by Arthur Jones using
|
|
official NIST polynomial data from
|
|
https://srdata.nist.gov/its90/download/type_k.tab */
|
|
|
|
#include <math.h> /* needed for exp() and pow() */
|
|
|
|
/* It is good practice to define things like pins used at the start
|
|
so that you avoid hard-coded values (magic numbers) in code */
|
|
#define TCpin A0
|
|
#define ThermistorPin A1
|
|
|
|
/* Similarly, define any constant values e.g. Vref, B, R0 here to avoid
|
|
need for "magic numbers" in code */
|
|
#define V_REF 5
|
|
|
|
float adc_to_voltage(int n_adc);
|
|
float kelvin_to_c(float k);
|
|
float resistance_to_temperature(float r);
|
|
float voltage_to_thermistor_resistance(float v);
|
|
float voltage_to_erc(float v);
|
|
|
|
void setup()
|
|
{
|
|
Serial.begin(9600);
|
|
}
|
|
|
|
void loop()
|
|
{
|
|
float e_rc, e_comp, thermistor_temp, thermocouple_temp;
|
|
int thermistor_val, thermocouple_val;
|
|
/* Put your code here to read ADCs and convert ADC voltages to
|
|
temperatures */
|
|
thermistor_val = analogRead(ThermistorPin);
|
|
thermocouple_val = analogRead(TCpin)
|
|
// Calculate thermistor temperature in degrees C ( Part b, i,ii,iii & v)
|
|
thermistor_temp = kelvin_to_c(resistance_to_temperature(voltage_to_thermistor_resistance(adc_to_voltage(thermistor_val))));
|
|
|
|
// Calculate thermocouple temperature in degrees C ( Part c, i - iv)
|
|
e_rc = 1000*voltage_to_erc(adc_to_voltage(thermocouple_val)); // convert to millivolts
|
|
e_comp = NISTdegCtoMilliVoltsKtype(thermistor_temp); // eqn (6) lab prep sheet
|
|
thermocouple_temp = NISTmilliVoltsToDegCKtype(e_rc + e_comp); // eqn (7) lab prep sheet
|
|
|
|
/* Display results. Don't use printf or formatting etc., they don't work on the Arduino. Just use
|
|
the serial print statements given here, inserting your own code as needed */
|
|
Serial.print("Thermistor temperature (deg C): ");
|
|
Serial.println(thermistor_temp);
|
|
Serial.print("Thermocouple temperature with CJC (deg C): ");
|
|
Serial.println(thermocouple_temp);
|
|
Serial.println("\n");
|
|
delay(1000);
|
|
}
|
|
|
|
|
|
/* Write a function to convert ADC value to
|
|
voltage: put it here and use it in your code above*/
|
|
float adc_to_voltage(int n_adc) {
|
|
return (float)n_adc*V_REF/1024.0; // eqn (1) lab prep sheet
|
|
}
|
|
|
|
|
|
/* Write a function to convert degrees K to degrees C
|
|
Call it from the main() function above */
|
|
float kelvin_to_c(float k) {
|
|
return k-273.15;
|
|
}
|
|
|
|
|
|
// Convert Resistance (Ohms) to Temperature (Kelvin) (for thermistor)
|
|
float resistance_to_thermistor_temperature(float r) {
|
|
// Define Thermistor constants
|
|
float t_0 = 298.15; // Kelvin
|
|
float r_0 = 10000; // Ohms
|
|
float b = 3975; // Kelvin
|
|
|
|
return 1.0 / ( (1.0/t_0) + (1.0/b)*log(r/r_0)); // eqn (3) lab prep sheet
|
|
}
|
|
|
|
|
|
// Convert Voltage (Volts) to Resistance (Ohms)
|
|
float voltage_to_thermistor_resistance(float v) {
|
|
float pull_down_resistance = 10; // kOhms
|
|
float v_hi = 3.3; // Volts
|
|
|
|
return 1000*((pull_down_resistance*v_hi/v)-10.0); // eqn (4) lab prep sheet
|
|
}
|
|
|
|
|
|
// Convert Voltage to E_RC
|
|
float voltage_to_erc(float v) {
|
|
return (v-0.35)/54.4; // eqn (5) lab prep sheet
|
|
}
|
|
|
|
|
|
/* Under no circumstances change any of the following code, it is fine as it is */
|
|
float NISTdegCtoMilliVoltsKtype(float tempDegC)
|
|
/* returns EMF in millivolts */
|
|
{
|
|
int i;
|
|
float milliVolts = 0;
|
|
if(tempDegC >= -170 && tempDegC < 0)
|
|
{
|
|
const float coeffs[11] =
|
|
{
|
|
0.000000000000E+00,
|
|
0.394501280250E-01,
|
|
0.236223735980E-04,
|
|
-0.328589067840E-06,
|
|
-0.499048287770E-08,
|
|
-0.675090591730E-10,
|
|
-0.574103274280E-12,
|
|
-0.310888728940E-14,
|
|
-0.104516093650E-16,
|
|
-0.198892668780E-19,
|
|
-0.163226974860E-22
|
|
};
|
|
for (i=0; i<=10; i++)
|
|
{
|
|
milliVolts += coeffs[i] * pow(tempDegC,i);
|
|
}
|
|
}
|
|
else if(tempDegC >= 0 && tempDegC <= 1372)
|
|
{
|
|
const float coeffs[10] =
|
|
{
|
|
-0.176004136860E-01,
|
|
0.389212049750E-01,
|
|
0.185587700320E-04,
|
|
-0.994575928740E-07,
|
|
0.318409457190E-09,
|
|
-0.560728448890E-12,
|
|
0.560750590590E-15,
|
|
-0.320207200030E-18,
|
|
0.971511471520E-22,
|
|
-0.121047212750E-25
|
|
};
|
|
const float a0 = 0.118597600000E+00;
|
|
const float a1 = -0.118343200000E-03;
|
|
const float a2 = 0.126968600000E+03;
|
|
|
|
for (i=0; i<=9; i++)
|
|
{
|
|
milliVolts += coeffs[i] * pow(tempDegC,i);
|
|
}
|
|
|
|
milliVolts += a0*exp(a1*(tempDegC - a2)*(tempDegC - a2));
|
|
}
|
|
else
|
|
{
|
|
milliVolts = 99E9;
|
|
}
|
|
return milliVolts;
|
|
}
|
|
|
|
|
|
float NISTmilliVoltsToDegCKtype(float tcEMFmV)
|
|
// returns temperature in deg C.
|
|
{
|
|
|
|
int i, j;
|
|
float tempDegC = 0;
|
|
const float coeffs[11][3] =
|
|
{
|
|
{0.0000000E+00, 0.000000E+00, -1.318058E+02},
|
|
{2.5173462E+01, 2.508355E+01, 4.830222E+01},
|
|
{-1.1662878E+00, 7.860106E-02, -1.646031E+00},
|
|
{-1.0833638E+00, -2.503131E-01, 5.464731E-02},
|
|
{-8.9773540E-01, 8.315270E-02, -9.650715E-04},
|
|
{-3.7342377E-01, -1.228034E-02, 8.802193E-06},
|
|
{-8.6632643E-02, 9.804036E-04, -3.110810E-08},
|
|
{-1.0450598E-02, -4.413030E-05, 0.000000E+00},
|
|
{-5.1920577E-04, 1.057734E-06, 0.000000E+00},
|
|
{0.0000000E+00, -1.052755E-08, 0.000000E+00}
|
|
};
|
|
if(tcEMFmV >=-5.891 && tcEMFmV <=0 )
|
|
{
|
|
j=0;
|
|
}
|
|
else if (tcEMFmV > 0 && tcEMFmV <=20.644 )
|
|
{
|
|
j=1;
|
|
}
|
|
else if (tcEMFmV > 20.644 && tcEMFmV <=54.886 )
|
|
{
|
|
j=2;
|
|
}
|
|
else
|
|
{
|
|
return 99E9;
|
|
}
|
|
|
|
for (i=0; i<=9; i++)
|
|
{
|
|
tempDegC += coeffs[i][j] * pow(tcEMFmV,i);
|
|
}
|
|
return tempDegC;
|
|
}
|