add lab resources

This commit is contained in:
2023-11-29 23:52:08 +00:00
parent f766105846
commit 78850704ba
11 changed files with 2099 additions and 0 deletions

View File

@@ -0,0 +1,286 @@
/* Stepper motor demonstration program written by Arthur Jones,
4 November 2018. Implements a simplistic and ineffective ramping
algorithm but provides framework for implementation of LeibRamp
algorithm described by Aryeh Eiderman, http://hwml.com/LeibRamp.pdf
Makes use of background work and some aspects of code developed
by Choaran Wang, 2017-18. This in turn incorporates some ideas
used in the AccelStepper library:
https://www.airspayce.com/mikem/arduino/AccelStepper/
Serial input aspects are based closely upon:
http://forum.arduino.cc/index.php?topic=396450
Example 4 - Receive a number as text and convert it to an int
Modified to read a long */
const int stepPin = 13;
const int dirPin = 9;
const bool FWDS = true;
const bool BWDS = false;
const long ticksPerSec = 1000000; // microseconds in this case
/* Define permissible parameters for motor */
// For testing by watching LED: try movements in order of 100 steps
//float accelSteps=20; /* leave this as a variable as we may over-write it */
//const float minSpeed = 2.0;
//const float maxPermissSpeed = 20.0;
//const float maxAccel = 10.0;
//const long stepLengthMus = 10000;
// For lab testing with real motor: try movements in the order of 3000 steps
float accelSteps=1000; /* leave this as a variable as we may over-write it */
const float minSpeed=10.0;
const float maxPermissSpeed=100000000.0;
const float maxAccel=500.0;
const long stepLengthMus=100;
/* Intervals in milliseconds for user-defined timed loops */
const long printInterval = 1000;
/* Global variables used for loop timing */
unsigned long prevMillisPrint = 0; /* stores last time values were printed */
/* Global variables used in serial input */
enum {numChars = 32};
char receivedChars[numChars]; /* an array to store the received data */
long dataNumber = 0; /* Value read from serial monitor input */
boolean newData = false;
/* Global variables relating to stepper motor position counting etc. */
long stepsToGo; /* Number of steps left to make in present movement */
long targetPosition; /* Intended destination of motor for given movement */
volatile long currentPosition = 0; /* Position in steps of motor relative to startup position */
double maxSpeed; /* Maximum speed in present movement (not nec. max permitted) */
bool direction; /* Direction of present movement: FWDS or BWDS */
volatile float p; /* Step interval in clock ticks or microseconds */
float p1, ps; /* Minimum and maximum step periods */
double deltaP; /* You'll be able to get rid of this later */
double R; /* Multiplying constant used in Eiderman's algorithm */
/* Global variable used for noting previous time of a step in timed loop */
long prevStepTime;
void setup()
{
long stepsToGo = 0;
currentPosition = 0;
goToPosition(dataNumber);
pinMode(stepPin, OUTPUT);
pinMode(dirPin, OUTPUT);
Serial.begin(9600);
Serial.println("Enter target position in number of steps and hit return");
prevStepTime = micros();
}
void loop()
{
unsigned long currentMillis = millis();
unsigned long currentMicros;
recvWithEndMarker();
stepsToGo = computeStepsToGo();
if (convertNewNumber())
{
Serial.print("Converted number: datanumber is: ");
Serial.println(dataNumber);
// Only get to this stage if there was new data to convert
if (stepsToGo <= 0)
{
// Only get to this stage if not busy, otherwise will have thrown away input
goToPosition(dataNumber);
Serial.print("Got target position: ");
Serial.println(targetPosition);
/* Define number of steps in acceleration phase using Equation (3) */
accelSteps = long(( maxPermissSpeed * maxPermissSpeed) / ( 2.0 * (double)maxAccel)); // Equation 4 but need to consider initial speed
stepsToGo = computeStepsToGo();
maxSpeed = maxPermissSpeed;
if (2 * accelSteps > stepsToGo)
{
// Define maximum speed in profile and number of steps in acceleration phase
maxSpeed = sqrt(minSpeed * minSpeed + stepsToGo * maxAccel); // Modified version of eq. 5
accelSteps = (long)(stepsToGo / 2);
}
ps = ((double)ticksPerSec) / maxSpeed; // Eq 7
p1 = (double)ticksPerSec / sqrt( minSpeed * minSpeed + 2 * maxAccel); // Eq 17 but need initial velocity
p = p1;
R = (double) maxAccel / ((double)ticksPerSec * (double)ticksPerSec); // Eq 19
}
}
/* Timed loop for stepping */
currentMicros = micros();
if (currentMicros - prevStepTime >= p)
{
moveOneStep();
prevStepTime = currentMicros;
computeNewSpeed();
}
/* Timed loop for printing */
if (currentMillis - prevMillisPrint >= printInterval)
{
// save the last time you printed output
prevMillisPrint = currentMillis;
printLoop();
}
}
/* Move a single step, holding pulse high for delayMicroSeconds */
void moveOneStep()
{
if (p != 0) /* p=0 is code for "don't make steps" */
{
digitalWrite(stepPin, HIGH);
if (direction == FWDS)
{
/* Is something missing here? */
digitalWrite(dirPin, HIGH);
currentPosition++;
}
else
{
/* Is something missing here? */
digitalWrite(dirPin, LOW);
currentPosition--;
}
delayMicroseconds(stepLengthMus);
digitalWrite(stepPin, LOW);
}
}
/* Calcuate new value of step interval p based on constants defined in loop() */
void computeNewSpeed()
{
double q;
double m;
stepsToGo = computeStepsToGo();
/* ----------------------------------------------------------------- */
/* Start of on-the-fly step calculation code, executed once per step */
if (stepsToGo == 0)
{
p = 0; // Not actually a zero step interval, used to switch stepping off
return;
}
else if (stepsToGo > accelSteps && (long)p > long(ps)) //Speeding up
{
m = -R; // definition following equation 20
}
else if (stepsToGo <= accelSteps) // Slowing down
{
m = R;
}
else // Running at constant speed
{
m = 0;
}
/* Update to step interval based on Eiderman's algorithm, using temporary variables */
q = m * p * p; // this is a part of optional enhancement
p = p * ( 1 + q + 1.5 * q * q); // this is an enhanced approximation -equation [22]
/* Need to ensure rounding error does not cause drift outside acceptable interval range:
replace p with relevant bound if it strays outside */
if (p < ps)
{
p = ps;
}
if (p > p1)
{
p = p1;
}
/* End of on-the-fly step calculation code */
/* ----------------------------------------------------------------- */
}
/* Work out how far the stepper motor still needs to move */
long computeStepsToGo()
{
if (direction == FWDS)
{
return targetPosition - currentPosition;
}
else
{
return currentPosition - targetPosition;
}
}
/* Set the target position and determine direction of intended movement */
void goToPosition(long newPosition)
{
targetPosition = newPosition;
if (targetPosition - currentPosition > 0)
{
direction = FWDS;
}
else
{
direction = BWDS;
}
}
/* Receive data from serial port finishing with "newline" character.
Based on http://forum.arduino.cc/index.php?topic=396450 Example 4 */
void recvWithEndMarker()
{
static byte ndx = 0;
char endMarker = '\n';
char rc;
if (Serial.available() > 0)
{
rc = Serial.read();
if (rc != endMarker)
{
receivedChars[ndx] = rc;
ndx++;
if (ndx >= numChars)
{
ndx = numChars - 1;
}
}
else
{
receivedChars[ndx] = '\0'; // terminate the string
ndx = 0;
newData = true;
}
}
}
bool convertNewNumber()
/* Converts character string to long integer only if there are new
data to convert, otherwise returns false */
{
if (newData)
{
dataNumber = 0.0;
dataNumber = atol(receivedChars);
newData = false;
Serial.println(dataNumber);
return true;
}
else
{
return false;
}
}
/* Print current position of stepper using timed loop */
void printLoop()
{
/* Sample all counters one after the other to avoid delay-related offsets */
Serial.print("Current position = ");
Serial.print(currentPosition);
Serial.print("\r\n");
Serial.print("p = ");
Serial.print(p);
Serial.print("\r\n");
}