add lab resources
This commit is contained in:
BIN
res/Lab 2 - Motion Control 23-24.pdf
Normal file
BIN
res/Lab 2 - Motion Control 23-24.pdf
Normal file
Binary file not shown.
BIN
res/LeibRamp.pdf
Normal file
BIN
res/LeibRamp.pdf
Normal file
Binary file not shown.
204
res/lab_2/LeibRampStepper.c
Normal file
204
res/lab_2/LeibRampStepper.c
Normal file
@@ -0,0 +1,204 @@
|
|||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <windows.h>
|
||||||
|
#include <math.h>
|
||||||
|
|
||||||
|
/* Only needed in Windows program to maintain compatibility with Arduino version of C/C++ */
|
||||||
|
#define bool BOOL
|
||||||
|
#define true 1
|
||||||
|
#define false 0
|
||||||
|
const bool FWDS = true;
|
||||||
|
const bool BWDS = false;
|
||||||
|
|
||||||
|
const long ticksPerSec = 1000; // ms on PC
|
||||||
|
// on Arduino it is 1E6 for micros (for s/w) or 1.6E7 for 62.5 ns ticks (for h/w)
|
||||||
|
|
||||||
|
/* Function prototypes: */
|
||||||
|
/* PC only, don't need function prototypes on Arduino as they get added within compilation process */
|
||||||
|
void moveOneStep();
|
||||||
|
void computeNewSpeed();
|
||||||
|
long computeStepsToGo();
|
||||||
|
void goToPosition(long newPosition);
|
||||||
|
void printLoop();
|
||||||
|
long millis(void);
|
||||||
|
|
||||||
|
/* Note: we are using global variables ONLY to preserve compatibility with the Arduino program structure.
|
||||||
|
They should not normally be used in C or C++ programs as they make for a poor software design. */
|
||||||
|
/* Global variables relating to stepper motor position counting etc. */
|
||||||
|
long stepsToGo; /* Number of steps left to make in present movement */
|
||||||
|
long targetPosition; /* Intended destination of motor for given movement */
|
||||||
|
volatile long currentPosition = 0; /* Position in steps of motor relative to startup position */
|
||||||
|
float maxSpeed; /* Maximum speed in present movement (not nec. max permitted) */
|
||||||
|
bool direction; /* Direction of present movement: FWDS or BWDS */
|
||||||
|
|
||||||
|
/* Global variables used in simplistic and Leib Ramp algorithms */
|
||||||
|
volatile float p; /* Step interval in clock ticks or microseconds */
|
||||||
|
float p1, ps; /* Minimum and maximum step periods */
|
||||||
|
float deltaP; /* You'll be able to get rid of this later */
|
||||||
|
float R; /* Multiplying constant used in Eiderman's algorithm */
|
||||||
|
|
||||||
|
/* Global variable used for noting previous time of a step in timed loop and for calculating speed and accel */
|
||||||
|
long prevStepTime=0;
|
||||||
|
long millisAtStart;
|
||||||
|
float prevSpeed=0.0;
|
||||||
|
|
||||||
|
/* Define permissible parameters for motor */
|
||||||
|
// For testing on PC only, not for use in Arduino program: try movements in order of 50-100 steps
|
||||||
|
float accelSteps=20; /* leave this as a variable as we may over-write it */
|
||||||
|
const float minSpeed = 1.0;
|
||||||
|
const float maxPermissSpeed = 20.0;
|
||||||
|
const float maxAccel = 10.0;
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
unsigned long currentMillis = millis();
|
||||||
|
prevStepTime = 0;
|
||||||
|
long positionToMoveTo;
|
||||||
|
while(true)
|
||||||
|
{
|
||||||
|
printf("Enter position to move to in profile (or 999 to terminate)\n");
|
||||||
|
scanf("%ld", &positionToMoveTo);
|
||||||
|
if (positionToMoveTo==999) break;
|
||||||
|
printf(" Time (s), Speed (steps/s), Accel (steps/s^2), Posit'n (steps), Step time (ticks)\n");
|
||||||
|
|
||||||
|
goToPosition(positionToMoveTo);
|
||||||
|
|
||||||
|
/* -------------------------------------------------------------- */
|
||||||
|
/* Start of pre-computation code - only executed once per profile */
|
||||||
|
// STEP 1
|
||||||
|
// Define number of steps in acceleration phase using Equation (3)
|
||||||
|
accelSteps = (long)(( maxPermissSpeed * maxPermissSpeed - minSpeed * minSpeed) / ( 2.0 * (float)maxAccel)); // Equation 4 but need to consider initial speed
|
||||||
|
stepsToGo = computeStepsToGo();
|
||||||
|
maxSpeed = maxPermissSpeed;
|
||||||
|
if (2 * accelSteps > stepsToGo)
|
||||||
|
{
|
||||||
|
// STEP 2
|
||||||
|
// Define maximum speed in profile and number of steps in acceleration phase
|
||||||
|
// Use Equations (4) and (5)
|
||||||
|
maxSpeed = sqrt(minSpeed * minSpeed + stepsToGo * maxAccel); // Modified version of eq. 5
|
||||||
|
accelSteps = (long)(stepsToGo / 2);
|
||||||
|
}
|
||||||
|
|
||||||
|
// STEPS 3 and 5
|
||||||
|
// Calculate initial value of and p1 and R Set p = p1
|
||||||
|
p1 = (float)ticksPerSec / sqrt( minSpeed * minSpeed + 2 * maxAccel); // Eq 17 incorporating initial velocity
|
||||||
|
p = p1;
|
||||||
|
R = (float) maxAccel / ((float)ticksPerSec * (float)ticksPerSec); // Eq 19
|
||||||
|
ps = ((float)ticksPerSec) / maxSpeed; // STEP 4 Eq 7 in paper
|
||||||
|
|
||||||
|
/* End of pre-computation code */
|
||||||
|
/* -------------------------------------------------------------- */
|
||||||
|
millisAtStart = millis(); /* Needed only to tabulate speed vs. time */
|
||||||
|
|
||||||
|
/* Timed loop for stepping, and associated coding */
|
||||||
|
while(stepsToGo > 0)
|
||||||
|
{
|
||||||
|
currentMillis = millis();
|
||||||
|
if (currentMillis - prevStepTime >= p)
|
||||||
|
{
|
||||||
|
moveOneStep();
|
||||||
|
prevStepTime = currentMillis;
|
||||||
|
computeNewSpeed();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Only needed for compatibility with Arduino program because millis() is not a native Windows API function */
|
||||||
|
long millis(void)
|
||||||
|
{
|
||||||
|
return GetTickCount();
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Move a single step. */
|
||||||
|
void moveOneStep()
|
||||||
|
{
|
||||||
|
if (p != 0) /* p=0 is code for "don't make steps" */
|
||||||
|
{
|
||||||
|
// Print to screen instead of making a step
|
||||||
|
if (direction == FWDS)
|
||||||
|
{
|
||||||
|
currentPosition++;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
currentPosition--;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Instead of actually making step, print out parameters for current step */
|
||||||
|
float speed = (float)(ticksPerSec)/p;
|
||||||
|
float accel = (float)(ticksPerSec)*(speed-prevSpeed)/p;
|
||||||
|
printf("%16.3f, %16.3f, %16.3f, %16ld, %16.3f\n", 0.001*(millis()-millisAtStart), speed, accel, currentPosition, p);
|
||||||
|
prevSpeed = speed;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Calcuate new value of step interval p based on constants defined in loop() */
|
||||||
|
void computeNewSpeed()
|
||||||
|
{
|
||||||
|
float q;
|
||||||
|
float m;
|
||||||
|
stepsToGo = computeStepsToGo();
|
||||||
|
|
||||||
|
/* ----------------------------------------------------------------- */
|
||||||
|
/* Start of on-the-fly step calculation code, executed once per step */
|
||||||
|
if (stepsToGo == 0) // STEP 6a
|
||||||
|
{
|
||||||
|
p = 0; // Not actually a zero step interval, used to switch stepping off
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
else if (stepsToGo >= accelSteps && (long)p > (long)ps) // Speeding up
|
||||||
|
{
|
||||||
|
m = -R; // Equation (9)
|
||||||
|
}
|
||||||
|
else if (stepsToGo <= accelSteps) // Slowing down
|
||||||
|
{
|
||||||
|
m = R; // Equation 10
|
||||||
|
}
|
||||||
|
else // Running at constant speed
|
||||||
|
{
|
||||||
|
m = 0; // Equation (11)
|
||||||
|
}
|
||||||
|
/* else p is unchanged: running at constant speed */
|
||||||
|
|
||||||
|
/* Update to step interval based on Eiderman's algorithm, using temporary variables */
|
||||||
|
// STEP 6b, c and d using Equations (12) and (13)
|
||||||
|
q = m * p * p; // this is a part of optional enhancement
|
||||||
|
p = p * ( 1 + q + 1.5 * q * q); // this is an enhanced approximation -equation [22]
|
||||||
|
/* Need to ensure rounding error does not cause drift outside acceptable interval range:
|
||||||
|
replace p with relevant bound if it strays outside */
|
||||||
|
if (p > p1)
|
||||||
|
{
|
||||||
|
p = p1;
|
||||||
|
}
|
||||||
|
/* End of on-the-fly step calculation code */
|
||||||
|
/* ----------------------------------------------------------------- */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Work out how far the stepper motor still needs to move */
|
||||||
|
long computeStepsToGo()
|
||||||
|
{
|
||||||
|
if (direction == FWDS)
|
||||||
|
{
|
||||||
|
return targetPosition - currentPosition;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return currentPosition - targetPosition;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Set the target position and determine direction of intended movement */
|
||||||
|
void goToPosition(long newPosition)
|
||||||
|
{
|
||||||
|
targetPosition = newPosition;
|
||||||
|
if (targetPosition - currentPosition > 0)
|
||||||
|
{
|
||||||
|
direction = FWDS;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
direction = BWDS;
|
||||||
|
}
|
||||||
|
}
|
||||||
286
res/lab_2/LeibRampStepper/LeibRampStepper.ino
Normal file
286
res/lab_2/LeibRampStepper/LeibRampStepper.ino
Normal file
@@ -0,0 +1,286 @@
|
|||||||
|
/* Stepper motor demonstration program written by Arthur Jones,
|
||||||
|
4 November 2018. Implements a simplistic and ineffective ramping
|
||||||
|
algorithm but provides framework for implementation of LeibRamp
|
||||||
|
algorithm described by Aryeh Eiderman, http://hwml.com/LeibRamp.pdf
|
||||||
|
|
||||||
|
Makes use of background work and some aspects of code developed
|
||||||
|
by Choaran Wang, 2017-18. This in turn incorporates some ideas
|
||||||
|
used in the AccelStepper library:
|
||||||
|
https://www.airspayce.com/mikem/arduino/AccelStepper/
|
||||||
|
|
||||||
|
Serial input aspects are based closely upon:
|
||||||
|
http://forum.arduino.cc/index.php?topic=396450
|
||||||
|
Example 4 - Receive a number as text and convert it to an int
|
||||||
|
Modified to read a long */
|
||||||
|
|
||||||
|
const int stepPin = 13;
|
||||||
|
const int dirPin = 9;
|
||||||
|
const bool FWDS = true;
|
||||||
|
const bool BWDS = false;
|
||||||
|
|
||||||
|
const long ticksPerSec = 1000000; // microseconds in this case
|
||||||
|
|
||||||
|
|
||||||
|
/* Define permissible parameters for motor */
|
||||||
|
// For testing by watching LED: try movements in order of 100 steps
|
||||||
|
//float accelSteps=20; /* leave this as a variable as we may over-write it */
|
||||||
|
//const float minSpeed = 2.0;
|
||||||
|
//const float maxPermissSpeed = 20.0;
|
||||||
|
//const float maxAccel = 10.0;
|
||||||
|
//const long stepLengthMus = 10000;
|
||||||
|
// For lab testing with real motor: try movements in the order of 3000 steps
|
||||||
|
float accelSteps=1000; /* leave this as a variable as we may over-write it */
|
||||||
|
const float minSpeed=10.0;
|
||||||
|
const float maxPermissSpeed=100000000.0;
|
||||||
|
const float maxAccel=500.0;
|
||||||
|
const long stepLengthMus=100;
|
||||||
|
|
||||||
|
/* Intervals in milliseconds for user-defined timed loops */
|
||||||
|
const long printInterval = 1000;
|
||||||
|
|
||||||
|
/* Global variables used for loop timing */
|
||||||
|
unsigned long prevMillisPrint = 0; /* stores last time values were printed */
|
||||||
|
|
||||||
|
/* Global variables used in serial input */
|
||||||
|
enum {numChars = 32};
|
||||||
|
char receivedChars[numChars]; /* an array to store the received data */
|
||||||
|
long dataNumber = 0; /* Value read from serial monitor input */
|
||||||
|
boolean newData = false;
|
||||||
|
|
||||||
|
/* Global variables relating to stepper motor position counting etc. */
|
||||||
|
long stepsToGo; /* Number of steps left to make in present movement */
|
||||||
|
long targetPosition; /* Intended destination of motor for given movement */
|
||||||
|
volatile long currentPosition = 0; /* Position in steps of motor relative to startup position */
|
||||||
|
double maxSpeed; /* Maximum speed in present movement (not nec. max permitted) */
|
||||||
|
bool direction; /* Direction of present movement: FWDS or BWDS */
|
||||||
|
|
||||||
|
volatile float p; /* Step interval in clock ticks or microseconds */
|
||||||
|
float p1, ps; /* Minimum and maximum step periods */
|
||||||
|
double deltaP; /* You'll be able to get rid of this later */
|
||||||
|
double R; /* Multiplying constant used in Eiderman's algorithm */
|
||||||
|
|
||||||
|
/* Global variable used for noting previous time of a step in timed loop */
|
||||||
|
long prevStepTime;
|
||||||
|
|
||||||
|
void setup()
|
||||||
|
{
|
||||||
|
long stepsToGo = 0;
|
||||||
|
currentPosition = 0;
|
||||||
|
goToPosition(dataNumber);
|
||||||
|
pinMode(stepPin, OUTPUT);
|
||||||
|
pinMode(dirPin, OUTPUT);
|
||||||
|
Serial.begin(9600);
|
||||||
|
Serial.println("Enter target position in number of steps and hit return");
|
||||||
|
|
||||||
|
prevStepTime = micros();
|
||||||
|
}
|
||||||
|
|
||||||
|
void loop()
|
||||||
|
{
|
||||||
|
unsigned long currentMillis = millis();
|
||||||
|
unsigned long currentMicros;
|
||||||
|
recvWithEndMarker();
|
||||||
|
stepsToGo = computeStepsToGo();
|
||||||
|
if (convertNewNumber())
|
||||||
|
{
|
||||||
|
Serial.print("Converted number: datanumber is: ");
|
||||||
|
Serial.println(dataNumber);
|
||||||
|
// Only get to this stage if there was new data to convert
|
||||||
|
if (stepsToGo <= 0)
|
||||||
|
{
|
||||||
|
// Only get to this stage if not busy, otherwise will have thrown away input
|
||||||
|
goToPosition(dataNumber);
|
||||||
|
Serial.print("Got target position: ");
|
||||||
|
Serial.println(targetPosition);
|
||||||
|
|
||||||
|
|
||||||
|
/* Define number of steps in acceleration phase using Equation (3) */
|
||||||
|
accelSteps = long(( maxPermissSpeed * maxPermissSpeed) / ( 2.0 * (double)maxAccel)); // Equation 4 but need to consider initial speed
|
||||||
|
stepsToGo = computeStepsToGo();
|
||||||
|
maxSpeed = maxPermissSpeed;
|
||||||
|
|
||||||
|
if (2 * accelSteps > stepsToGo)
|
||||||
|
{
|
||||||
|
// Define maximum speed in profile and number of steps in acceleration phase
|
||||||
|
maxSpeed = sqrt(minSpeed * minSpeed + stepsToGo * maxAccel); // Modified version of eq. 5
|
||||||
|
accelSteps = (long)(stepsToGo / 2);
|
||||||
|
}
|
||||||
|
ps = ((double)ticksPerSec) / maxSpeed; // Eq 7
|
||||||
|
|
||||||
|
p1 = (double)ticksPerSec / sqrt( minSpeed * minSpeed + 2 * maxAccel); // Eq 17 but need initial velocity
|
||||||
|
p = p1;
|
||||||
|
R = (double) maxAccel / ((double)ticksPerSec * (double)ticksPerSec); // Eq 19
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Timed loop for stepping */
|
||||||
|
currentMicros = micros();
|
||||||
|
if (currentMicros - prevStepTime >= p)
|
||||||
|
{
|
||||||
|
moveOneStep();
|
||||||
|
prevStepTime = currentMicros;
|
||||||
|
computeNewSpeed();
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Timed loop for printing */
|
||||||
|
if (currentMillis - prevMillisPrint >= printInterval)
|
||||||
|
{
|
||||||
|
// save the last time you printed output
|
||||||
|
prevMillisPrint = currentMillis;
|
||||||
|
printLoop();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Move a single step, holding pulse high for delayMicroSeconds */
|
||||||
|
void moveOneStep()
|
||||||
|
{
|
||||||
|
if (p != 0) /* p=0 is code for "don't make steps" */
|
||||||
|
{
|
||||||
|
digitalWrite(stepPin, HIGH);
|
||||||
|
if (direction == FWDS)
|
||||||
|
{
|
||||||
|
/* Is something missing here? */
|
||||||
|
digitalWrite(dirPin, HIGH);
|
||||||
|
currentPosition++;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
/* Is something missing here? */
|
||||||
|
digitalWrite(dirPin, LOW);
|
||||||
|
currentPosition--;
|
||||||
|
}
|
||||||
|
delayMicroseconds(stepLengthMus);
|
||||||
|
digitalWrite(stepPin, LOW);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Calcuate new value of step interval p based on constants defined in loop() */
|
||||||
|
void computeNewSpeed()
|
||||||
|
{
|
||||||
|
double q;
|
||||||
|
double m;
|
||||||
|
stepsToGo = computeStepsToGo();
|
||||||
|
|
||||||
|
/* ----------------------------------------------------------------- */
|
||||||
|
/* Start of on-the-fly step calculation code, executed once per step */
|
||||||
|
if (stepsToGo == 0)
|
||||||
|
{
|
||||||
|
p = 0; // Not actually a zero step interval, used to switch stepping off
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
else if (stepsToGo > accelSteps && (long)p > long(ps)) //Speeding up
|
||||||
|
{
|
||||||
|
m = -R; // definition following equation 20
|
||||||
|
}
|
||||||
|
else if (stepsToGo <= accelSteps) // Slowing down
|
||||||
|
{
|
||||||
|
m = R;
|
||||||
|
}
|
||||||
|
else // Running at constant speed
|
||||||
|
{
|
||||||
|
m = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Update to step interval based on Eiderman's algorithm, using temporary variables */
|
||||||
|
q = m * p * p; // this is a part of optional enhancement
|
||||||
|
p = p * ( 1 + q + 1.5 * q * q); // this is an enhanced approximation -equation [22]
|
||||||
|
/* Need to ensure rounding error does not cause drift outside acceptable interval range:
|
||||||
|
replace p with relevant bound if it strays outside */
|
||||||
|
if (p < ps)
|
||||||
|
{
|
||||||
|
p = ps;
|
||||||
|
}
|
||||||
|
if (p > p1)
|
||||||
|
{
|
||||||
|
p = p1;
|
||||||
|
}
|
||||||
|
/* End of on-the-fly step calculation code */
|
||||||
|
/* ----------------------------------------------------------------- */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Work out how far the stepper motor still needs to move */
|
||||||
|
long computeStepsToGo()
|
||||||
|
{
|
||||||
|
if (direction == FWDS)
|
||||||
|
{
|
||||||
|
return targetPosition - currentPosition;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return currentPosition - targetPosition;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Set the target position and determine direction of intended movement */
|
||||||
|
void goToPosition(long newPosition)
|
||||||
|
{
|
||||||
|
targetPosition = newPosition;
|
||||||
|
if (targetPosition - currentPosition > 0)
|
||||||
|
{
|
||||||
|
direction = FWDS;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
direction = BWDS;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Receive data from serial port finishing with "newline" character.
|
||||||
|
Based on http://forum.arduino.cc/index.php?topic=396450 Example 4 */
|
||||||
|
void recvWithEndMarker()
|
||||||
|
{
|
||||||
|
static byte ndx = 0;
|
||||||
|
char endMarker = '\n';
|
||||||
|
char rc;
|
||||||
|
|
||||||
|
if (Serial.available() > 0)
|
||||||
|
{
|
||||||
|
rc = Serial.read();
|
||||||
|
|
||||||
|
if (rc != endMarker)
|
||||||
|
{
|
||||||
|
receivedChars[ndx] = rc;
|
||||||
|
ndx++;
|
||||||
|
if (ndx >= numChars)
|
||||||
|
{
|
||||||
|
ndx = numChars - 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
receivedChars[ndx] = '\0'; // terminate the string
|
||||||
|
ndx = 0;
|
||||||
|
newData = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
bool convertNewNumber()
|
||||||
|
/* Converts character string to long integer only if there are new
|
||||||
|
data to convert, otherwise returns false */
|
||||||
|
{
|
||||||
|
if (newData)
|
||||||
|
{
|
||||||
|
dataNumber = 0.0;
|
||||||
|
dataNumber = atol(receivedChars);
|
||||||
|
newData = false;
|
||||||
|
Serial.println(dataNumber);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Print current position of stepper using timed loop */
|
||||||
|
void printLoop()
|
||||||
|
{
|
||||||
|
/* Sample all counters one after the other to avoid delay-related offsets */
|
||||||
|
Serial.print("Current position = ");
|
||||||
|
Serial.print(currentPosition);
|
||||||
|
Serial.print("\r\n");
|
||||||
|
Serial.print("p = ");
|
||||||
|
Serial.print(p);
|
||||||
|
Serial.print("\r\n");
|
||||||
|
}
|
||||||
209
res/lab_2/LeibRampStepperMac.c
Normal file
209
res/lab_2/LeibRampStepperMac.c
Normal file
@@ -0,0 +1,209 @@
|
|||||||
|
// Leib Ramp Stepper program with millis function adapted for MacOS
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <windows.h>
|
||||||
|
#include <math.h>
|
||||||
|
#include <time.h>
|
||||||
|
|
||||||
|
|
||||||
|
/* Only needed in Windows program to maintain compatibility with Arduino version of C/C++ */
|
||||||
|
typedef enum { false, true } bool;
|
||||||
|
#define true 1
|
||||||
|
#define false 0
|
||||||
|
const bool FWDS = true;
|
||||||
|
const bool BWDS = false;
|
||||||
|
|
||||||
|
const long ticksPerSec = 1000; // ms on PC
|
||||||
|
// on Arduino it is 1E6 for micros (for s/w) or 1.6E7 for 62.5 ns ticks (for h/w)
|
||||||
|
|
||||||
|
/* Function prototypes: */
|
||||||
|
/* PC only, don't need function prototypes on Arduino as they get added within compilation process */
|
||||||
|
void moveOneStep();
|
||||||
|
void computeNewSpeed();
|
||||||
|
long computeStepsToGo();
|
||||||
|
void goToPosition(long newPosition);
|
||||||
|
void printLoop();
|
||||||
|
long millis(void);
|
||||||
|
|
||||||
|
/* Note: we are using global variables ONLY to preserve compatibility with the Arduino program structure.
|
||||||
|
They should not normally be used in C or C++ programs as they make for a poor software design. */
|
||||||
|
/* Global variables relating to stepper motor position counting etc. */
|
||||||
|
long stepsToGo; /* Number of steps left to make in present movement */
|
||||||
|
long targetPosition; /* Intended destination of motor for given movement */
|
||||||
|
volatile long currentPosition = 0; /* Position in steps of motor relative to startup position */
|
||||||
|
float maxSpeed; /* Maximum speed in present movement (not nec. max permitted) */
|
||||||
|
bool direction; /* Direction of present movement: FWDS or BWDS */
|
||||||
|
|
||||||
|
/* Global variables used in simplistic and Leib Ramp algorithms */
|
||||||
|
volatile float p; /* Step interval in clock ticks or microseconds */
|
||||||
|
float p1, ps; /* Minimum and maximum step periods */
|
||||||
|
float deltaP; /* You'll be able to get rid of this later */
|
||||||
|
float R; /* Multiplying constant used in Eiderman's algorithm */
|
||||||
|
|
||||||
|
/* Global variable used for noting previous time of a step in timed loop and for calculating speed and accel */
|
||||||
|
long prevStepTime=0;
|
||||||
|
long millisAtStart;
|
||||||
|
float prevSpeed=0.0;
|
||||||
|
|
||||||
|
/* Define permissible parameters for motor */
|
||||||
|
// For testing on PC only, not for use in Arduino program: try movements in order of 50-100 steps
|
||||||
|
float accelSteps=20; /* leave this as a variable as we may over-write it */
|
||||||
|
const float minSpeed = 1.0;
|
||||||
|
const float maxPermissSpeed = 20.0;
|
||||||
|
const float maxAccel = 10.0;
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
unsigned long currentMillis = millis();
|
||||||
|
prevStepTime = 0;
|
||||||
|
long positionToMoveTo;
|
||||||
|
while(true)
|
||||||
|
{
|
||||||
|
printf("Enter position to move to in profile (or 999 to terminate)\n");
|
||||||
|
scanf("%ld", &positionToMoveTo);
|
||||||
|
if (positionToMoveTo==999) break;
|
||||||
|
printf(" Time (s), Speed (steps/s), Accel (steps/s^2), Posit'n (steps), Step time (ticks)\n");
|
||||||
|
|
||||||
|
goToPosition(positionToMoveTo);
|
||||||
|
|
||||||
|
/* -------------------------------------------------------------- */
|
||||||
|
/* Start of pre-computation code - only executed once per profile */
|
||||||
|
// STEP 1
|
||||||
|
// Define number of steps in acceleration phase using Equation (3)
|
||||||
|
accelSteps = (long)(( maxPermissSpeed * maxPermissSpeed - minSpeed * minSpeed) / ( 2.0 * (float)maxAccel)); // Equation 4 but need to consider initial speed
|
||||||
|
stepsToGo = computeStepsToGo();
|
||||||
|
maxSpeed = maxPermissSpeed;
|
||||||
|
if (2 * accelSteps > stepsToGo)
|
||||||
|
{
|
||||||
|
// STEP 2
|
||||||
|
// Define maximum speed in profile and number of steps in acceleration phase
|
||||||
|
// Use Equations (4) and (5)
|
||||||
|
maxSpeed = sqrt(minSpeed * minSpeed + stepsToGo * maxAccel); // Modified version of eq. 5
|
||||||
|
accelSteps = (long)(stepsToGo / 2);
|
||||||
|
}
|
||||||
|
|
||||||
|
// STEPS 3 and 5
|
||||||
|
// Calculate initial value of and p1 and R Set p = p1
|
||||||
|
p1 = (float)ticksPerSec / sqrt( minSpeed * minSpeed + 2 * maxAccel); // Eq 17 incorporating initial velocity
|
||||||
|
p = p1;
|
||||||
|
R = (float) maxAccel / ((float)ticksPerSec * (float)ticksPerSec); // Eq 19
|
||||||
|
ps = ((float)ticksPerSec) / maxSpeed; // STEP 4 Eq 7 in paper
|
||||||
|
|
||||||
|
/* End of pre-computation code */
|
||||||
|
/* -------------------------------------------------------------- */
|
||||||
|
millisAtStart = millis(); /* Needed only to tabulate speed vs. time */
|
||||||
|
|
||||||
|
/* Timed loop for stepping, and associated coding */
|
||||||
|
while(stepsToGo > 0)
|
||||||
|
{
|
||||||
|
currentMillis = millis();
|
||||||
|
if (currentMillis - prevStepTime >= p)
|
||||||
|
{
|
||||||
|
moveOneStep();
|
||||||
|
prevStepTime = currentMillis;
|
||||||
|
computeNewSpeed();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Only needed for compatibility with Arduino program because millis() is not a native MacOS function */
|
||||||
|
long millis(void)
|
||||||
|
{
|
||||||
|
struct timespec _t;
|
||||||
|
clock_gettime(CLOCK_REALTIME, &_t);
|
||||||
|
return _t.tv_sec*1000 + lround(_t.tv_nsec/1e6);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Move a single step. */
|
||||||
|
void moveOneStep()
|
||||||
|
{
|
||||||
|
if (p != 0) /* p=0 is code for "don't make steps" */
|
||||||
|
{
|
||||||
|
// Print to screen instead of making a step
|
||||||
|
if (direction == FWDS)
|
||||||
|
{
|
||||||
|
currentPosition++;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
currentPosition--;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Instead of actually making step, print out parameters for current step */
|
||||||
|
float speed = (float)(ticksPerSec)/p;
|
||||||
|
float accel = (float)(ticksPerSec)*(speed-prevSpeed)/p;
|
||||||
|
printf("%16.3f, %16.3f, %16.3f, %16ld, %16.3f\n", 0.001*(millis()-millisAtStart), speed, accel, currentPosition, p);
|
||||||
|
prevSpeed = speed;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Calcuate new value of step interval p based on constants defined in loop() */
|
||||||
|
void computeNewSpeed()
|
||||||
|
{
|
||||||
|
float q;
|
||||||
|
float m;
|
||||||
|
stepsToGo = computeStepsToGo();
|
||||||
|
|
||||||
|
/* ----------------------------------------------------------------- */
|
||||||
|
/* Start of on-the-fly step calculation code, executed once per step */
|
||||||
|
if (stepsToGo == 0) // STEP 6a
|
||||||
|
{
|
||||||
|
p = 0; // Not actually a zero step interval, used to switch stepping off
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
else if (stepsToGo >= accelSteps && (long)p > (long)ps) // Speeding up
|
||||||
|
{
|
||||||
|
m = -R; // Equation (9)
|
||||||
|
}
|
||||||
|
else if (stepsToGo <= accelSteps) // Slowing down
|
||||||
|
{
|
||||||
|
m = R; // Equation 10
|
||||||
|
}
|
||||||
|
else // Running at constant speed
|
||||||
|
{
|
||||||
|
m = 0; // Equation (11)
|
||||||
|
}
|
||||||
|
/* else p is unchanged: running at constant speed */
|
||||||
|
|
||||||
|
/* Update to step interval based on Eiderman's algorithm, using temporary variables */
|
||||||
|
// STEP 6b, c and d using Equations (12) and (13)
|
||||||
|
q = m * p * p; // this is a part of optional enhancement
|
||||||
|
p = p * ( 1 + q + 1.5 * q * q); // this is an enhanced approximation -equation [22]
|
||||||
|
/* Need to ensure rounding error does not cause drift outside acceptable interval range:
|
||||||
|
replace p with relevant bound if it strays outside */
|
||||||
|
if (p > p1)
|
||||||
|
{
|
||||||
|
p = p1;
|
||||||
|
}
|
||||||
|
/* End of on-the-fly step calculation code */
|
||||||
|
/* ----------------------------------------------------------------- */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Work out how far the stepper motor still needs to move */
|
||||||
|
long computeStepsToGo()
|
||||||
|
{
|
||||||
|
if (direction == FWDS)
|
||||||
|
{
|
||||||
|
return targetPosition - currentPosition;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return currentPosition - targetPosition;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Set the target position and determine direction of intended movement */
|
||||||
|
void goToPosition(long newPosition)
|
||||||
|
{
|
||||||
|
targetPosition = newPosition;
|
||||||
|
if (targetPosition - currentPosition > 0)
|
||||||
|
{
|
||||||
|
direction = FWDS;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
direction = BWDS;
|
||||||
|
}
|
||||||
|
}
|
||||||
247
res/lab_2/PIDClosedLoop/PIDClosedLoop.ino
Normal file
247
res/lab_2/PIDClosedLoop/PIDClosedLoop.ino
Normal file
@@ -0,0 +1,247 @@
|
|||||||
|
|
||||||
|
/* Example of driving servomotor using PID closed loop control */
|
||||||
|
|
||||||
|
#include <SPI.h> /* Needed to communicate with LS7366R (Counter Click) */
|
||||||
|
#include <PID_v1.h>
|
||||||
|
|
||||||
|
/* Serial input aspects are based closely upon:
|
||||||
|
http://forum.arduino.cc/index.php?topic=396450
|
||||||
|
Example 4 - Receive a number as text and convert it to an int
|
||||||
|
Modified to read a float */
|
||||||
|
|
||||||
|
/* LS7366R aspects very loosely based on concepts used in controlling
|
||||||
|
the Robogaia 3-axis encoder shield though implementation is very different
|
||||||
|
https://www.robogaia.com/3-axis-encoder-conter-arduino-shield.html */
|
||||||
|
|
||||||
|
/* Pins used for L298 driver */
|
||||||
|
const int enA = 13; /* PWM output, also visible as LED */
|
||||||
|
const int in1 = 8; /* H bridge selection input 1 */
|
||||||
|
const int in2 = 9; /* H bridge selection input 2 */
|
||||||
|
const float minPercent = -100.0;
|
||||||
|
const float maxPercent = 100.0;
|
||||||
|
|
||||||
|
/* Used to to initiate SPI communication to LS7366R chip (Counter click) */
|
||||||
|
const int chipSelectPin = 10;
|
||||||
|
|
||||||
|
/* Size of buffer used to store received characters */
|
||||||
|
enum {numChars = 32};
|
||||||
|
|
||||||
|
/* Intervals in milliseconds for user-defined timed loops */
|
||||||
|
const int printInterval = 1000;
|
||||||
|
const int controlInterval = 20;
|
||||||
|
|
||||||
|
/* Global variables used in serial input */
|
||||||
|
char receivedChars[numChars]; // an array to store the received data
|
||||||
|
float dataNumber = 0;
|
||||||
|
boolean newData = false;
|
||||||
|
|
||||||
|
/* Global variables used for motor control and encoder reading */
|
||||||
|
double percentSpeed = 0;
|
||||||
|
double encoderPosnMeasured = 0;
|
||||||
|
double positionSetPoint = 0;
|
||||||
|
|
||||||
|
/* PID */
|
||||||
|
double Kp = 0.1;
|
||||||
|
double Ki = 0.1;
|
||||||
|
double Kd = 0.05;
|
||||||
|
|
||||||
|
PID myPID(&encoderPosnMeasured, &percentSpeed, &positionSetPoint, Kp, Ki, Kd, DIRECT);
|
||||||
|
|
||||||
|
/* Global variables used for loop timing */
|
||||||
|
unsigned long prevMillisPrint = 0; /* stores last time values were printed */
|
||||||
|
unsigned long prevMillisControl = 0;
|
||||||
|
|
||||||
|
/* Overlapping regions of memory used to convert four bytes to a long integer */
|
||||||
|
union fourBytesToLong
|
||||||
|
{
|
||||||
|
long result;
|
||||||
|
unsigned char bytes [4];
|
||||||
|
};
|
||||||
|
|
||||||
|
void setup()
|
||||||
|
{
|
||||||
|
Serial.begin(9600);
|
||||||
|
Serial.print("Kp"); Serial.print(Kp);
|
||||||
|
Serial.print("Ki"); Serial.print(Ki);
|
||||||
|
Serial.print("Kd"); Serial.println(Kd);
|
||||||
|
Serial.println("Enter desired motor position: ");
|
||||||
|
|
||||||
|
/* Set up and initialise pin used for selecting LS7366R counter: hi=inactive */
|
||||||
|
pinMode(chipSelectPin, OUTPUT);
|
||||||
|
digitalWrite(chipSelectPin, HIGH);
|
||||||
|
|
||||||
|
SetUpLS7366RCounter();
|
||||||
|
|
||||||
|
delay(100);
|
||||||
|
|
||||||
|
/* Configure control pins for L298 H bridge */
|
||||||
|
pinMode(enA, OUTPUT);
|
||||||
|
pinMode(in1, OUTPUT);
|
||||||
|
pinMode(in2, OUTPUT);
|
||||||
|
|
||||||
|
/* Set initial rotation direction */
|
||||||
|
digitalWrite(in1, LOW);
|
||||||
|
digitalWrite(in2, HIGH);
|
||||||
|
|
||||||
|
delay(100);
|
||||||
|
positionSetPoint = 0;
|
||||||
|
encoderPosnMeasured=readEncoderCountFromLS7366R();
|
||||||
|
myPID.SetOutputLimits(-100,100);
|
||||||
|
myPID.SetMode(AUTOMATIC);
|
||||||
|
}
|
||||||
|
|
||||||
|
void loop()
|
||||||
|
{
|
||||||
|
unsigned long currentMillis = millis();
|
||||||
|
|
||||||
|
// Call control loop at frequency controInterval
|
||||||
|
if (currentMillis - prevMillisControl >= controlInterval) {
|
||||||
|
// save the last time the control loop was called
|
||||||
|
prevMillisControl = currentMillis;
|
||||||
|
controlLoop();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Call print loop at frequency of printInterval
|
||||||
|
if (currentMillis - prevMillisPrint >= printInterval) {
|
||||||
|
// save the last time you printed output
|
||||||
|
prevMillisPrint = currentMillis;
|
||||||
|
printLoop();
|
||||||
|
}
|
||||||
|
|
||||||
|
recvWithEndMarker();// Update value read from serial line
|
||||||
|
// If a valid number has been read this is set to the current required position
|
||||||
|
if(convertNewNumber()){
|
||||||
|
positionSetPoint=dataNumber;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void controlLoop()
|
||||||
|
{
|
||||||
|
// Get the current position from the encoder
|
||||||
|
encoderPosnMeasured=readEncoderCountFromLS7366R(); // Get current motor position
|
||||||
|
myPID.Compute(); // Use the PID library to compute new value for motor input
|
||||||
|
driveMotorPercent(percentSpeed); // Send value to motor
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void driveMotorPercent(double percentSpeed)
|
||||||
|
/* Output PWM and H bridge signals based on positive or negative duty cycle % */
|
||||||
|
{
|
||||||
|
percentSpeed = constrain(percentSpeed, -100, 100);
|
||||||
|
int regVal = map(percentSpeed, -100, 100, -255, 255);
|
||||||
|
analogWrite(enA, (int)abs(regVal)); // Write value to speed control pin
|
||||||
|
digitalWrite(in1, regVal>0); // Set the value of direction control pins to true or false
|
||||||
|
digitalWrite(in2, !(regVal>0));
|
||||||
|
}
|
||||||
|
|
||||||
|
void printLoop()
|
||||||
|
/* Print count and control information */
|
||||||
|
{
|
||||||
|
double error;
|
||||||
|
Serial.print("Actual position: ");
|
||||||
|
Serial.print(encoderPosnMeasured);
|
||||||
|
Serial.print("\t");
|
||||||
|
Serial.print("Desired position: ");
|
||||||
|
Serial.print(positionSetPoint);
|
||||||
|
Serial.print("\t");
|
||||||
|
error = positionSetPoint - encoderPosnMeasured;
|
||||||
|
Serial.print("Error: ");
|
||||||
|
Serial.print(error);
|
||||||
|
Serial.print("\t");
|
||||||
|
// Serial.print(percentSpeed);
|
||||||
|
Serial.print("\r\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
long readEncoderCountFromLS7366R()
|
||||||
|
/* Reads the LS7366R chip to obtain up/down count from encoder. Reads four
|
||||||
|
bytes separately then concverts them to a long integer using a union */
|
||||||
|
{
|
||||||
|
fourBytesToLong converter; /* Union of four bytes and a long integer */
|
||||||
|
|
||||||
|
digitalWrite(chipSelectPin,LOW); /* Make LS7366R active */
|
||||||
|
|
||||||
|
SPI.transfer(0x60); // Request count
|
||||||
|
converter.bytes[3] = SPI.transfer(0x00); /* Read highest order byte */
|
||||||
|
converter.bytes[2] = SPI.transfer(0x00);
|
||||||
|
converter.bytes[1] = SPI.transfer(0x00);
|
||||||
|
converter.bytes[0] = SPI.transfer(0x00); /* Read lowest order byte */
|
||||||
|
|
||||||
|
digitalWrite(chipSelectPin,HIGH); /* Make LS7366R inactive */
|
||||||
|
|
||||||
|
return converter.result;
|
||||||
|
}
|
||||||
|
|
||||||
|
void SetUpLS7366RCounter(void)
|
||||||
|
/* Initialises LS7366R hardware counter on Counter Click board to read quadrature signals */
|
||||||
|
{
|
||||||
|
/* Control registers in LS7366R - see LS7366R datasheet for this and subsequent control words */
|
||||||
|
unsigned char IR = 0x00, MRD0=0x00;
|
||||||
|
|
||||||
|
// SPI initialization
|
||||||
|
SPI.begin();
|
||||||
|
//SPI.setClockDivider(SPI_CLOCK_DIV16); // SPI at 1Mhz (on 16Mhz clock)
|
||||||
|
delay(10);
|
||||||
|
|
||||||
|
/* Configure as free-running 4x quadrature counter */
|
||||||
|
digitalWrite(chipSelectPin,LOW); /* Select chip and initialise transfer */
|
||||||
|
/* Instruction register IR */
|
||||||
|
IR |= 0x80; /* Write to register (B7=1, B6=0) */
|
||||||
|
IR |= 0x08; /* Select register MDR0: B5=0, B4=0, B3=1 */
|
||||||
|
SPI.transfer(IR); /* Write to instruction register */
|
||||||
|
/* Mode register 0 */
|
||||||
|
MRD0 |= 0x03; /* 4x quadrature count: B0=1, B1=1 */
|
||||||
|
/* B2=B3=0: free running. B4=B5=0: disable index. */
|
||||||
|
/* B6=0: asynchronous index. B7: Filter division factor = 1. */
|
||||||
|
SPI.transfer(MRD0);
|
||||||
|
digitalWrite(chipSelectPin,HIGH);
|
||||||
|
|
||||||
|
/* Clear the counter i.e. set it to zero */
|
||||||
|
IR = 0x00; /* Clear the instructino register IR */
|
||||||
|
digitalWrite(chipSelectPin,LOW); /* Select chip and initialise transfer */
|
||||||
|
IR |= 0x20; /* Select CNTR: B5=1,B4=0,B3=0; CLR register: B7=0,B6=0 */
|
||||||
|
SPI.transfer(IR); /* Write to instruction register */
|
||||||
|
digitalWrite(chipSelectPin,HIGH);
|
||||||
|
}
|
||||||
|
|
||||||
|
void recvWithEndMarker()
|
||||||
|
/* Receive data from serial port finishing with "newline" character.
|
||||||
|
Based on http://forum.arduino.cc/index.php?topic=396450 Example 4 */
|
||||||
|
{
|
||||||
|
static byte ndx = 0;
|
||||||
|
char endMarker = '\n';
|
||||||
|
char rc;
|
||||||
|
|
||||||
|
if (Serial.available() > 0) { // If data is available read value from serial monitor
|
||||||
|
rc = Serial.read();
|
||||||
|
|
||||||
|
if (rc != endMarker) { // Store character in buffer if not end marker
|
||||||
|
receivedChars[ndx] = rc;
|
||||||
|
ndx++;
|
||||||
|
if (ndx >= numChars) {
|
||||||
|
ndx = numChars - 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else { // Add end of string character and change flag to indicate new data is available
|
||||||
|
receivedChars[ndx] = '\0'; // terminate the string
|
||||||
|
ndx = 0;
|
||||||
|
newData = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
bool convertNewNumber()
|
||||||
|
/* Converts character string to floating point number only if there are new
|
||||||
|
data to convert, otherwise returns false */
|
||||||
|
{
|
||||||
|
if (newData) {
|
||||||
|
dataNumber = 0.0;
|
||||||
|
dataNumber = atof(receivedChars);
|
||||||
|
newData = false;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
235
res/lab_2/ProportionalClosedLoop/ProportionalClosedLoop.ino
Normal file
235
res/lab_2/ProportionalClosedLoop/ProportionalClosedLoop.ino
Normal file
@@ -0,0 +1,235 @@
|
|||||||
|
|
||||||
|
/* Example of driving servomotor using simple proportional closed loop control */
|
||||||
|
|
||||||
|
#include <SPI.h> /* Needed to communicate with LS7366R (Counter Click) */
|
||||||
|
|
||||||
|
/* Serial input aspects are based closely upon:
|
||||||
|
http://forum.arduino.cc/index.php?topic=396450
|
||||||
|
Example 4 - Receive a number as text and convert it to an int
|
||||||
|
Modified to read a float */
|
||||||
|
|
||||||
|
/* LS7366R aspects very loosely based on concepts used in controlling
|
||||||
|
the Robogaia 3-axis encoder shield though implementation is very different
|
||||||
|
https://www.robogaia.com/3-axis-encoder-conter-arduino-shield.html */
|
||||||
|
|
||||||
|
/* Pins used for L298 driver */
|
||||||
|
const int enA = 13; /* PWM output, also visible as LED */
|
||||||
|
const int in1 = 8; /* H bridge selection input 1 */
|
||||||
|
const int in2 = 9; /* H bridge selection input 2 */
|
||||||
|
const float minPercent = -100.0;
|
||||||
|
const float maxPercent = 100.0;
|
||||||
|
|
||||||
|
/* Used to to initiate SPI communication to LS7366R chip (Counter click) */
|
||||||
|
const int chipSelectPin = 10;
|
||||||
|
|
||||||
|
/* Size of buffer used to store received characters */
|
||||||
|
enum {numChars = 32};
|
||||||
|
|
||||||
|
/* Intervals in milliseconds for user-defined timed loops */
|
||||||
|
const int printInterval = 1000;
|
||||||
|
const int controlInterval = 20;
|
||||||
|
|
||||||
|
/* Global variables used in serial input */
|
||||||
|
char receivedChars[numChars]; // an array to store the received data
|
||||||
|
float dataNumber = 0; // new for this version
|
||||||
|
boolean newData = false;
|
||||||
|
|
||||||
|
/* Global variable used for motor control */
|
||||||
|
double percentDutyCycle;
|
||||||
|
|
||||||
|
long encoderPosnMeasured = 0;
|
||||||
|
double positionSetPoint = 0;
|
||||||
|
|
||||||
|
/* Proportional gain constant */
|
||||||
|
double Kp = 0.1;
|
||||||
|
|
||||||
|
/* Global variables used for loop timing */
|
||||||
|
unsigned long prevMillisPrint = 0; /* stores last time values were printed */
|
||||||
|
unsigned long prevMillisControl = 0; /* Stores last time control loop executed */
|
||||||
|
|
||||||
|
/* Overlapping regions of memory used to convert four bytes to a long integer */
|
||||||
|
union fourBytesToLong
|
||||||
|
{
|
||||||
|
long result;
|
||||||
|
unsigned char bytes [4];
|
||||||
|
};
|
||||||
|
|
||||||
|
void setup()
|
||||||
|
{
|
||||||
|
Serial.begin(9600);
|
||||||
|
Serial.println("Enter desired motor position: ");
|
||||||
|
|
||||||
|
/* Set up and initialise pin used for selecting LS7366R counter: hi=inactive */
|
||||||
|
pinMode(chipSelectPin, OUTPUT);
|
||||||
|
digitalWrite(chipSelectPin, HIGH);
|
||||||
|
|
||||||
|
SetUpLS7366RCounter();
|
||||||
|
|
||||||
|
delay(100);
|
||||||
|
|
||||||
|
/* Configure control pins for L298 H bridge */
|
||||||
|
pinMode(enA, OUTPUT);
|
||||||
|
pinMode(in1, OUTPUT);
|
||||||
|
pinMode(in2, OUTPUT);
|
||||||
|
|
||||||
|
/* Set initial rotation direction */
|
||||||
|
digitalWrite(in1, LOW);
|
||||||
|
digitalWrite(in2, HIGH);
|
||||||
|
}
|
||||||
|
|
||||||
|
void loop()
|
||||||
|
{
|
||||||
|
unsigned long currentMillis = millis();
|
||||||
|
|
||||||
|
// Call control loop at frequency controInterval
|
||||||
|
if (currentMillis - prevMillisControl >= controlInterval)
|
||||||
|
{
|
||||||
|
// Save the current time for comparison the next time the loop is called
|
||||||
|
prevMillisControl = currentMillis;
|
||||||
|
controlLoop();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Call print loop at frequency of printInterval
|
||||||
|
if (currentMillis - prevMillisPrint >= printInterval)
|
||||||
|
{
|
||||||
|
// Save the current time for comparison the next time the loop is called
|
||||||
|
prevMillisPrint = currentMillis;
|
||||||
|
printLoop();
|
||||||
|
}
|
||||||
|
|
||||||
|
recvWithEndMarker(); // Update value read from serial line
|
||||||
|
// If a valid number has been read this is set to the current required position
|
||||||
|
if(convertNewNumber())
|
||||||
|
{
|
||||||
|
positionSetPoint = dataNumber;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void controlLoop()
|
||||||
|
{
|
||||||
|
double error;
|
||||||
|
// Get the current position from the encoder
|
||||||
|
encoderPosnMeasured = readEncoderCountFromLS7366R();
|
||||||
|
// Calculate the difference in position from the required position
|
||||||
|
error = positionSetPoint - (double)encoderPosnMeasured;
|
||||||
|
// Multiply by the gain
|
||||||
|
percentDutyCycle = error * Kp;
|
||||||
|
driveMotorPercent(percentDutyCycle);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Output PWM and H bridge signals based on positive or negative duty cycle % */
|
||||||
|
void driveMotorPercent(double percentDutyCycle)
|
||||||
|
{
|
||||||
|
// constrain the duty cycle to a value between -100 and 100 then map to +-255
|
||||||
|
percentDutyCycle = constrain(percentDutyCycle, -100, 100);
|
||||||
|
int regVal = map(percentDutyCycle, -100, 100, -255, 255);
|
||||||
|
analogWrite(enA, (int)abs(regVal)); // Write value to speed control pin
|
||||||
|
digitalWrite(in1, regVal>0); // Set the value of direction control pins to true or false
|
||||||
|
digitalWrite(in2, !(regVal>0));
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Print count and control information */
|
||||||
|
void printLoop()
|
||||||
|
{ Serial.print("Actual position: ");
|
||||||
|
Serial.print(encoderPosnMeasured);
|
||||||
|
Serial.print("\t");
|
||||||
|
Serial.print("Desired position: ");
|
||||||
|
Serial.print(positionSetPoint);
|
||||||
|
Serial.print("\t");
|
||||||
|
Serial.print("Error: ");
|
||||||
|
Serial.print(positionSetPoint - (double)encoderPosnMeasured);
|
||||||
|
Serial.print("\r\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Reads the LS7366R chip to obtain up/down count from encoder. Reads four
|
||||||
|
bytes separately then concverts them to a long integer using a union */
|
||||||
|
long readEncoderCountFromLS7366R()
|
||||||
|
{
|
||||||
|
fourBytesToLong converter; /* Union of four bytes and a long integer */
|
||||||
|
|
||||||
|
digitalWrite(chipSelectPin,LOW); /* Make LS7366R active */
|
||||||
|
|
||||||
|
SPI.transfer(0x60); // Request count
|
||||||
|
converter.bytes[3] = SPI.transfer(0x00); /* Read highest order byte */
|
||||||
|
converter.bytes[2] = SPI.transfer(0x00);
|
||||||
|
converter.bytes[1] = SPI.transfer(0x00);
|
||||||
|
converter.bytes[0] = SPI.transfer(0x00); /* Read lowest order byte */
|
||||||
|
|
||||||
|
digitalWrite(chipSelectPin,HIGH); /* Make LS7366R inactive */
|
||||||
|
|
||||||
|
return converter.result;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Initialises LS7366R hardware counter on Counter Click board to read quadrature signals */
|
||||||
|
void SetUpLS7366RCounter(void)
|
||||||
|
{
|
||||||
|
/* Control registers in LS7366R - see LS7366R datasheet for this and subsequent control words */
|
||||||
|
unsigned char IR = 0x00, MRD0=0x00;
|
||||||
|
|
||||||
|
// SPI initialization
|
||||||
|
SPI.begin();
|
||||||
|
//SPI.setClockDivider(SPI_CLOCK_DIV16); // SPI at 1Mhz (on 16Mhz clock)
|
||||||
|
delay(10);
|
||||||
|
|
||||||
|
/* Configure as free-running 4x quadrature counter */
|
||||||
|
digitalWrite(chipSelectPin,LOW); /* Select chip and initialise transfer */
|
||||||
|
/* Instruction register IR */
|
||||||
|
IR |= 0x80; /* Write to register (B7=1, B6=0) */
|
||||||
|
IR |= 0x08; /* Select register MDR0: B5=0, B4=0, B3=1 */
|
||||||
|
SPI.transfer(IR); /* Write to instruction register */
|
||||||
|
/* Mode register 0 */
|
||||||
|
MRD0 |= 0x03; /* 4x quadrature count: B0=1, B1=1 */
|
||||||
|
/* B2=B3=0: free running. B4=B5=0: disable index. */
|
||||||
|
/* B6=0: asynchronous index. B7: Filter division factor = 1. */
|
||||||
|
SPI.transfer(MRD0);
|
||||||
|
digitalWrite(chipSelectPin,HIGH);
|
||||||
|
|
||||||
|
/* Clear the counter i.e. set it to zero */
|
||||||
|
IR = 0x00; /* Clear the instructino register IR */
|
||||||
|
digitalWrite(chipSelectPin,LOW); /* Select chip and initialise transfer */
|
||||||
|
IR |= 0x20; /* Select CNTR: B5=1,B4=0,B3=0; CLR register: B7=0,B6=0 */
|
||||||
|
SPI.transfer(IR); /* Write to instruction register */
|
||||||
|
digitalWrite(chipSelectPin,HIGH);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Receive data from serial port finishing with "newline" character.
|
||||||
|
Based on http://forum.arduino.cc/index.php?topic=396450 Example 4 */
|
||||||
|
void recvWithEndMarker()
|
||||||
|
{
|
||||||
|
static byte ndx = 0;
|
||||||
|
char endMarker = '\n';
|
||||||
|
char rc;
|
||||||
|
|
||||||
|
if (Serial.available() > 0) { // If data is available read value from serial monitor
|
||||||
|
rc = Serial.read();
|
||||||
|
|
||||||
|
if (rc != endMarker) { // Store character in buffer if not end marker
|
||||||
|
receivedChars[ndx] = rc;
|
||||||
|
ndx++;
|
||||||
|
if (ndx >= numChars) {
|
||||||
|
ndx = numChars - 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else { // Add end of string character and change flag to indicate new data is available
|
||||||
|
receivedChars[ndx] = '\0'; // terminate the string
|
||||||
|
ndx = 0;
|
||||||
|
newData = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
bool convertNewNumber()
|
||||||
|
/* Converts character string to floating point number only if there are new
|
||||||
|
data to convert, otherwise returns false */
|
||||||
|
{
|
||||||
|
if (newData) {
|
||||||
|
dataNumber = 0.0;
|
||||||
|
dataNumber = atof(receivedChars);
|
||||||
|
newData = false;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
208
res/lab_2/SimpleControlNoFeedback/SimpleControlNoFeedback.ino
Normal file
208
res/lab_2/SimpleControlNoFeedback/SimpleControlNoFeedback.ino
Normal file
@@ -0,0 +1,208 @@
|
|||||||
|
/* Example of driving servomotor and reading encoder signals */
|
||||||
|
|
||||||
|
#include <SPI.h> /* Needed to communicate with LS7366R (Counter Click) */
|
||||||
|
|
||||||
|
/* Serial input aspects are based closely upon:
|
||||||
|
http://forum.arduino.cc/index.php?topic=396450
|
||||||
|
Example 4 - Receive a number as text and convert it to an int
|
||||||
|
Modified to read a float */
|
||||||
|
|
||||||
|
/* LS7366R aspects very loosely based on concepts used in controlling
|
||||||
|
the Robogaia 3-axis encoder shield though implementation is very different
|
||||||
|
https://www.robogaia.com/3-axis-encoder-conter-arduino-shield.html */
|
||||||
|
|
||||||
|
/* Pins used for L298 DC Motor driver */
|
||||||
|
#define enA 13 /* PWM output, also visible as LED */
|
||||||
|
#define in1 8 /* H bridge selection input 1 */
|
||||||
|
#define in2 9 /* H bridge selection input 2 */
|
||||||
|
#define minPercent -100.0
|
||||||
|
#define maxPercent 100.0
|
||||||
|
|
||||||
|
/* Used to to initiate SPI communication to LS7366R chip (Counter click) */
|
||||||
|
#define chipSelectPin 10
|
||||||
|
|
||||||
|
/* Size of buffer used to store received characters */
|
||||||
|
#define numChars 32
|
||||||
|
|
||||||
|
/* Intervals in milliseconds for user-defined timed loops */
|
||||||
|
#define printInterval 1000
|
||||||
|
|
||||||
|
/* Global variables used in serial input */
|
||||||
|
char receivedChars[numChars]; // an array to store the received data
|
||||||
|
float dataNumber = 0;
|
||||||
|
boolean newData = false;
|
||||||
|
|
||||||
|
/* Global variable used for motor control */
|
||||||
|
double percentSpeed;
|
||||||
|
|
||||||
|
/* Global variables used for loop timing */
|
||||||
|
unsigned long prevMillisPrint = 0; /* stores last time values were printed */
|
||||||
|
|
||||||
|
/* Overlapping regions of memory used to convert four bytes to a long integer */
|
||||||
|
union fourBytesToLong
|
||||||
|
{
|
||||||
|
long result;
|
||||||
|
unsigned char bytes [4];
|
||||||
|
};
|
||||||
|
|
||||||
|
void setup()
|
||||||
|
{
|
||||||
|
Serial.begin(9600);
|
||||||
|
Serial.println("Enter PWM duty cycle as a percentage (positive for forward, negative for reverse");
|
||||||
|
|
||||||
|
/* Set up and initialise pin used for selecting LS7366R counter: hi=inactive */
|
||||||
|
pinMode(chipSelectPin, OUTPUT);
|
||||||
|
digitalWrite(chipSelectPin, HIGH);
|
||||||
|
|
||||||
|
SetUpLS7366RCounter();
|
||||||
|
|
||||||
|
delay(100);
|
||||||
|
|
||||||
|
/* Configure control pins for L298 H bridge */
|
||||||
|
pinMode(enA, OUTPUT);
|
||||||
|
pinMode(in1, OUTPUT);
|
||||||
|
pinMode(in2, OUTPUT);
|
||||||
|
|
||||||
|
/* Set initial rotation direction */
|
||||||
|
digitalWrite(in1, LOW);
|
||||||
|
digitalWrite(in2, HIGH);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void loop()
|
||||||
|
{
|
||||||
|
unsigned long currentMillis = millis();
|
||||||
|
|
||||||
|
// Print out value to serial monitor at interval specified by printInterval variable
|
||||||
|
if (currentMillis - prevMillisPrint >= printInterval) {
|
||||||
|
// save the last time you printed output
|
||||||
|
prevMillisPrint = currentMillis;
|
||||||
|
printLoop();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check if new data has been input via serial monitor
|
||||||
|
recvWithEndMarker();
|
||||||
|
if(convertNewNumber()) // Update value read from serial line
|
||||||
|
{
|
||||||
|
percentSpeed=dataNumber;
|
||||||
|
driveMotorPercent(percentSpeed); // Send new speed value to motor driver
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void driveMotorPercent(double percentSpeed)
|
||||||
|
/* Output PWM and H bridge signals based on positive or negative duty cycle % */
|
||||||
|
{
|
||||||
|
percentSpeed = constrain(percentSpeed, -100, 100); // Value must be in range -100 to +100
|
||||||
|
int regVal = map(percentSpeed, -100, 100, -255, 255); // Scale value to range -255 to +255
|
||||||
|
analogWrite(enA, (int)abs(regVal)); // Write value to speed control pin
|
||||||
|
digitalWrite(in1, regVal>0); // Set the value of direction control pins to true or false
|
||||||
|
digitalWrite(in2, !(regVal>0)); // depending on whether speed is positive or negative
|
||||||
|
}
|
||||||
|
|
||||||
|
void printLoop()
|
||||||
|
/* Print count and control information */
|
||||||
|
{
|
||||||
|
/* Sample counter chip and output position and requested speed */
|
||||||
|
long encoderCountFromLS7366R = readEncoderCountFromLS7366R();
|
||||||
|
|
||||||
|
Serial.print("Count from LS7366R = ");
|
||||||
|
Serial.print(encoderCountFromLS7366R);
|
||||||
|
Serial.print(" Percent speed = ");
|
||||||
|
Serial.print(percentSpeed);
|
||||||
|
Serial.print("\r\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
long readEncoderCountFromLS7366R()
|
||||||
|
/* Reads the LS7366R chip to obtain up/down count from encoder. Reads four
|
||||||
|
bytes separately then concverts them to a long integer using a union */
|
||||||
|
{
|
||||||
|
fourBytesToLong converter; /* Union of four bytes and a long integer */
|
||||||
|
|
||||||
|
digitalWrite(chipSelectPin,LOW); /* Make LS7366R active */
|
||||||
|
|
||||||
|
SPI.transfer(0x60); // Request count
|
||||||
|
converter.bytes[3] = SPI.transfer(0x00); /* Read highest order byte */
|
||||||
|
converter.bytes[2] = SPI.transfer(0x00);
|
||||||
|
converter.bytes[1] = SPI.transfer(0x00);
|
||||||
|
converter.bytes[0] = SPI.transfer(0x00); /* Read lowest order byte */
|
||||||
|
|
||||||
|
digitalWrite(chipSelectPin,HIGH); /* Make LS7366R inactive */
|
||||||
|
|
||||||
|
return converter.result;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void SetUpLS7366RCounter(void)
|
||||||
|
/* Initialiseds LS7366R hardware counter on Counter Click board to read quadrature signals */
|
||||||
|
{
|
||||||
|
/* Control registers in LS7366R - see LS7366R datasheet for this and subsequent control words */
|
||||||
|
unsigned char IR = 0x00, MRD0=0x00;
|
||||||
|
|
||||||
|
// SPI initialization
|
||||||
|
SPI.begin();
|
||||||
|
//SPI.setClockDivider(SPI_CLOCK_DIV16); // SPI at 1Mhz (on 16Mhz clock)
|
||||||
|
delay(10);
|
||||||
|
|
||||||
|
/* Configure as free-running 4x quadrature counter */
|
||||||
|
digitalWrite(chipSelectPin,LOW); /* Select chip and initialise transfer */
|
||||||
|
/* Instruction register IR */
|
||||||
|
IR |= 0x80; /* Write to register (B7=1, B6=0) */
|
||||||
|
IR |= 0x08; /* Select register MDR0: B5=0, B4=0, B3=1 */
|
||||||
|
SPI.transfer(IR); /* Write to instruction register */
|
||||||
|
/* Mode register 0 */
|
||||||
|
MRD0 |= 0x03; /* 4x quadrature count: B0=1, B1=1 */
|
||||||
|
/* B2=B3=0: free running. B4=B5=0: disable index. */
|
||||||
|
/* B6=0: asynchronous index. B7: Filter division factor = 1. */
|
||||||
|
SPI.transfer(MRD0);
|
||||||
|
digitalWrite(chipSelectPin,HIGH);
|
||||||
|
|
||||||
|
/* Clear the counter i.e. set it to zero */
|
||||||
|
IR = 0x00; /* Clear the instructino register IR */
|
||||||
|
digitalWrite(chipSelectPin,LOW); /* Select chip and initialise transfer */
|
||||||
|
IR |= 0x20; /* Select CNTR: B5=1,B4=0,B3=0; CLR register: B7=0,B6=0 */
|
||||||
|
SPI.transfer(IR); /* Write to instruction register */
|
||||||
|
digitalWrite(chipSelectPin,HIGH);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void recvWithEndMarker()
|
||||||
|
/* Receive data from serial port finishing with "newline" character.
|
||||||
|
Based on http://forum.arduino.cc/index.php?topic=396450 Example 4 */
|
||||||
|
{
|
||||||
|
static byte ndx = 0;
|
||||||
|
char endMarker = '\n';
|
||||||
|
char rc;
|
||||||
|
|
||||||
|
if (Serial.available() > 0) { // If data is available read value from serial monitor
|
||||||
|
rc = Serial.read();
|
||||||
|
|
||||||
|
if (rc != endMarker) { // Store character in buffer if not end marker
|
||||||
|
receivedChars[ndx] = rc;
|
||||||
|
ndx++;
|
||||||
|
if (ndx >= numChars) {
|
||||||
|
ndx = numChars - 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else { // Add end of string character and change flag to indicate new data is available
|
||||||
|
receivedChars[ndx] = '\0'; // terminate the string
|
||||||
|
ndx = 0;
|
||||||
|
newData = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
bool convertNewNumber()
|
||||||
|
/* Converts character string to floating point number only if there are new
|
||||||
|
data to convert, otherwise returns false */
|
||||||
|
{
|
||||||
|
if (newData) {
|
||||||
|
dataNumber = 0.0;
|
||||||
|
dataNumber = atof(receivedChars);
|
||||||
|
newData = false;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
183
res/lab_2/SimplisticRampStepper Mac.c
Normal file
183
res/lab_2/SimplisticRampStepper Mac.c
Normal file
@@ -0,0 +1,183 @@
|
|||||||
|
// Simplistic Ramp Stepper program with millis function adapted for MacOS
|
||||||
|
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <windows.h>
|
||||||
|
#include <math.h>
|
||||||
|
#include <time.h>
|
||||||
|
|
||||||
|
/* Only needed in Windows program to maintain compatibility with Arduino version of C/C++ */
|
||||||
|
typedef enum { false, true } bool;
|
||||||
|
#define true 1
|
||||||
|
#define false 0
|
||||||
|
const bool FWDS = true;
|
||||||
|
const bool BWDS = false;
|
||||||
|
|
||||||
|
const long ticksPerSec = 1000; // ms on PC
|
||||||
|
// on Arduino it is 1E6 for micros (for s/w) or 1.6E7 for 62.5 ns ticks (for h/w)
|
||||||
|
|
||||||
|
void moveOneStep();
|
||||||
|
void computeNewSpeed();
|
||||||
|
long computeStepsToGo();
|
||||||
|
void goToPosition(long newPosition);
|
||||||
|
long millis(void);
|
||||||
|
|
||||||
|
/* Note: we are using global variables ONLY to preserve compatibility with the Arduino program structure.
|
||||||
|
They should not normally be used in C or C++ programs as they make for a poor software design. */
|
||||||
|
/* Global variables relating to stepper motor position counting etc. */
|
||||||
|
long stepsToGo; /* Number of steps left to make in present movement */
|
||||||
|
long targetPosition; /* Intended destination of motor for given movement */
|
||||||
|
volatile long currentPosition = 0; /* Position in steps of motor relative to startup position */
|
||||||
|
float maxSpeed; /* Maximum speed in present movement (not nec. max permitted) */
|
||||||
|
bool direction; /* Direction of present movement: FWDS or BWDS */
|
||||||
|
|
||||||
|
/* Global variables used in simplistic and Leib Ramp algorithms */
|
||||||
|
volatile float p; /* Step interval in clock ticks or microseconds */
|
||||||
|
float ps; /* Maximum step periods */
|
||||||
|
float deltaP; /* You'll be able to get rid of this later */
|
||||||
|
|
||||||
|
/* Global variable used for noting previous time of a step in timed loop and for calculating speed and accel */
|
||||||
|
long prevStepTime=0;
|
||||||
|
long millisAtStart;
|
||||||
|
float prevSpeed=0.0;
|
||||||
|
|
||||||
|
/* Define permissible parameters for motor */
|
||||||
|
// For testing on PC only, not for use in Arduino program: try movements in order of 50-100 steps
|
||||||
|
float accelSteps=20; /* leave this as a variable as we may over-write it */
|
||||||
|
const float minSpeed = 1.0; // in steps/s
|
||||||
|
const float maxPermissSpeed = 20.0; // in steps/s
|
||||||
|
const float maxAccel = 10.0; // in steps/s^2
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
unsigned long currentMillis = millis();
|
||||||
|
prevStepTime = 0;
|
||||||
|
long positionToMoveTo;
|
||||||
|
while(true)
|
||||||
|
{
|
||||||
|
printf("Enter position to move to in profile (or 999 to terminate)\n");
|
||||||
|
scanf("%ld", &positionToMoveTo);
|
||||||
|
if (positionToMoveTo==999) break;
|
||||||
|
printf(" Time (s), Speed (steps/s), Accel (steps/s^2), Posit'n (steps), Step time (ticks)\n");
|
||||||
|
|
||||||
|
goToPosition(positionToMoveTo);
|
||||||
|
|
||||||
|
/* -------------------------------------------------------------- */
|
||||||
|
/* Start of pre-computation code - only executed once per profile */
|
||||||
|
|
||||||
|
float maxInterval = ((float)ticksPerSec) / minSpeed;
|
||||||
|
ps = ((float)ticksPerSec) / maxPermissSpeed;
|
||||||
|
deltaP = (maxInterval - ps) / accelSteps;
|
||||||
|
stepsToGo = computeStepsToGo();
|
||||||
|
maxSpeed = maxPermissSpeed;
|
||||||
|
if (2 * accelSteps > stepsToGo)
|
||||||
|
{
|
||||||
|
accelSteps = (long)(stepsToGo / 2);
|
||||||
|
}
|
||||||
|
|
||||||
|
p = maxInterval;
|
||||||
|
|
||||||
|
ps = ((float)ticksPerSec) / maxSpeed;
|
||||||
|
/* End of pre-computation code */
|
||||||
|
/* -------------------------------------------------------------- */
|
||||||
|
millisAtStart = millis(); /* Needed only to tabulate speed vs. time */
|
||||||
|
|
||||||
|
/* Timed loop for stepping */
|
||||||
|
while(stepsToGo > 0)
|
||||||
|
{
|
||||||
|
currentMillis = millis();
|
||||||
|
if (currentMillis - prevStepTime >= p)
|
||||||
|
{
|
||||||
|
moveOneStep();
|
||||||
|
prevStepTime = currentMillis;
|
||||||
|
computeNewSpeed();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Only needed for compatibility with Arduino program because millis() is not a native MacOS function */
|
||||||
|
long millis(void)
|
||||||
|
{
|
||||||
|
struct timespec _t;
|
||||||
|
clock_gettime(CLOCK_REALTIME, &_t);
|
||||||
|
return _t.tv_sec*1000 + lround(_t.tv_nsec/1e6);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Move a single step. If this were running on the Arduino we would holding pulse high for delayMicroSeconds */
|
||||||
|
void moveOneStep()
|
||||||
|
{
|
||||||
|
if (p != 0) /* p=0 is code for "don't make steps" */
|
||||||
|
{
|
||||||
|
// Print to screen instead of making a step
|
||||||
|
if (direction == FWDS)
|
||||||
|
{
|
||||||
|
currentPosition++;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
currentPosition--;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Instead of actually making step, print out parameters for current step */
|
||||||
|
float speed = (float)(ticksPerSec)/p;
|
||||||
|
float accel = (float)(ticksPerSec)*(speed-prevSpeed)/p;
|
||||||
|
printf("%16.3f, %16.3f, %16.3f, %16ld, %16.3f\n", 0.001*(millis()-millisAtStart), speed, accel, currentPosition, p);
|
||||||
|
prevSpeed = speed;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Calcuate new value of step interval p based on constants defined in timed loop */
|
||||||
|
void computeNewSpeed()
|
||||||
|
{
|
||||||
|
stepsToGo = computeStepsToGo();
|
||||||
|
|
||||||
|
/* Start of on-the-fly step calculation code, executed once per step */
|
||||||
|
if (stepsToGo == 0)
|
||||||
|
{
|
||||||
|
p = 0; // Not actually a zero step interval, used to switch stepping off
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
else if (stepsToGo >= accelSteps && (long)p > (long)ps) // Changed to make ramps even length
|
||||||
|
/* Speeding up */
|
||||||
|
{
|
||||||
|
p -= deltaP;
|
||||||
|
}
|
||||||
|
else if (stepsToGo <= accelSteps)
|
||||||
|
/* Slowing down */
|
||||||
|
{
|
||||||
|
p += deltaP;
|
||||||
|
}
|
||||||
|
/* else p is unchanged: running at constant speed */
|
||||||
|
|
||||||
|
/* End of on-the-fly step calculation code */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Work out how far the stepper motor still needs to move */
|
||||||
|
long computeStepsToGo()
|
||||||
|
{
|
||||||
|
if (direction == FWDS)
|
||||||
|
{
|
||||||
|
return targetPosition - currentPosition;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return currentPosition - targetPosition;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Set the target position and determine direction of intended movement */
|
||||||
|
void goToPosition(long newPosition)
|
||||||
|
{
|
||||||
|
targetPosition = newPosition;
|
||||||
|
if (targetPosition - currentPosition > 0)
|
||||||
|
{
|
||||||
|
direction = FWDS;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
direction = BWDS;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
178
res/lab_2/SimplisticRampStepper.c
Normal file
178
res/lab_2/SimplisticRampStepper.c
Normal file
@@ -0,0 +1,178 @@
|
|||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <windows.h>
|
||||||
|
#include <math.h>
|
||||||
|
|
||||||
|
/* Only needed in Windows program to maintain compatibility with Arduino version of C/C++ */
|
||||||
|
#define bool BOOL
|
||||||
|
#define true 1
|
||||||
|
#define false 0
|
||||||
|
const bool FWDS = true;
|
||||||
|
const bool BWDS = false;
|
||||||
|
|
||||||
|
const long ticksPerSec = 1000; // ms on PC
|
||||||
|
// on Arduino it is 1E6 for micros (for s/w) or 1.6E7 for 62.5 ns ticks (for h/w)
|
||||||
|
|
||||||
|
void moveOneStep();
|
||||||
|
void computeNewSpeed();
|
||||||
|
long computeStepsToGo();
|
||||||
|
void goToPosition(long newPosition);
|
||||||
|
long millis(void);
|
||||||
|
|
||||||
|
/* Note: we are using global variables ONLY to preserve compatibility with the Arduino program structure.
|
||||||
|
They should not normally be used in C or C++ programs as they make for a poor software design. */
|
||||||
|
/* Global variables relating to stepper motor position counting etc. */
|
||||||
|
long stepsToGo; /* Number of steps left to make in present movement */
|
||||||
|
long targetPosition; /* Intended destination of motor for given movement */
|
||||||
|
volatile long currentPosition = 0; /* Position in steps of motor relative to startup position */
|
||||||
|
float maxSpeed; /* Maximum speed in present movement (not nec. max permitted) */
|
||||||
|
bool direction; /* Direction of present movement: FWDS or BWDS */
|
||||||
|
|
||||||
|
/* Global variables used in simplistic and Leib Ramp algorithms */
|
||||||
|
volatile float p; /* Step interval in clock ticks or microseconds */
|
||||||
|
float ps; /* Maximum step periods */
|
||||||
|
float deltaP; /* You'll be able to get rid of this later */
|
||||||
|
|
||||||
|
/* Global variable used for noting previous time of a step in timed loop and for calculating speed and accel */
|
||||||
|
long prevStepTime=0;
|
||||||
|
long millisAtStart;
|
||||||
|
float prevSpeed=0.0;
|
||||||
|
|
||||||
|
/* Define permissible parameters for motor */
|
||||||
|
// For testing on PC only, not for use in Arduino program: try movements in order of 50-100 steps
|
||||||
|
float accelSteps=20; /* leave this as a variable as we may over-write it */
|
||||||
|
const float minSpeed = 1.0; // in steps/s
|
||||||
|
const float maxPermissSpeed = 20.0; // in steps/s
|
||||||
|
const float maxAccel = 10.0; // in steps/s^2
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
unsigned long currentMillis = millis();
|
||||||
|
prevStepTime = 0;
|
||||||
|
long positionToMoveTo;
|
||||||
|
while(true)
|
||||||
|
{
|
||||||
|
printf("Enter position to move to in profile (or 999 to terminate)\n");
|
||||||
|
scanf("%ld", &positionToMoveTo);
|
||||||
|
if (positionToMoveTo==999) break;
|
||||||
|
printf(" Time (s), Speed (steps/s), Accel (steps/s^2), Posit'n (steps), Step time (ticks)\n");
|
||||||
|
|
||||||
|
goToPosition(positionToMoveTo);
|
||||||
|
|
||||||
|
/* -------------------------------------------------------------- */
|
||||||
|
/* Start of pre-computation code - only executed once per profile */
|
||||||
|
|
||||||
|
float maxInterval = ((float)ticksPerSec) / minSpeed;
|
||||||
|
ps = ((float)ticksPerSec) / maxPermissSpeed;
|
||||||
|
deltaP = (maxInterval - ps) / accelSteps;
|
||||||
|
stepsToGo = computeStepsToGo();
|
||||||
|
maxSpeed = maxPermissSpeed;
|
||||||
|
if (2 * accelSteps > stepsToGo)
|
||||||
|
{
|
||||||
|
accelSteps = (long)(stepsToGo / 2);
|
||||||
|
}
|
||||||
|
|
||||||
|
p = maxInterval;
|
||||||
|
|
||||||
|
ps = ((float)ticksPerSec) / maxSpeed;
|
||||||
|
/* End of pre-computation code */
|
||||||
|
/* -------------------------------------------------------------- */
|
||||||
|
millisAtStart = millis(); /* Needed only to tabulate speed vs. time */
|
||||||
|
|
||||||
|
/* Timed loop for stepping */
|
||||||
|
while(stepsToGo > 0)
|
||||||
|
{
|
||||||
|
currentMillis = millis();
|
||||||
|
if (currentMillis - prevStepTime >= p)
|
||||||
|
{
|
||||||
|
moveOneStep();
|
||||||
|
prevStepTime = currentMillis;
|
||||||
|
computeNewSpeed();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
long millis(void)
|
||||||
|
/* Only needed for compatibility with Arduino program because millis() is not a native Windows API function */
|
||||||
|
{
|
||||||
|
return GetTickCount();
|
||||||
|
}
|
||||||
|
|
||||||
|
void moveOneStep()
|
||||||
|
/* Move a single step. If this were running on the Arduino we would holding pulse high for delayMicroSeconds */
|
||||||
|
{
|
||||||
|
if (p != 0) /* p=0 is code for "don't make steps" */
|
||||||
|
{
|
||||||
|
// Print to screen instead of making a step
|
||||||
|
if (direction == FWDS)
|
||||||
|
{
|
||||||
|
currentPosition++;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
currentPosition--;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Instead of actually making step, print out parameters for current step */
|
||||||
|
float speed = (float)(ticksPerSec)/p;
|
||||||
|
float accel = (float)(ticksPerSec)*(speed-prevSpeed)/p;
|
||||||
|
printf("%16.3f, %16.3f, %16.3f, %16ld, %16.3f\n", 0.001*(millis()-millisAtStart), speed, accel, currentPosition, p);
|
||||||
|
prevSpeed = speed;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Calcuate new value of step interval p based on constants defined in timed loop */
|
||||||
|
void computeNewSpeed()
|
||||||
|
{
|
||||||
|
stepsToGo = computeStepsToGo();
|
||||||
|
|
||||||
|
/* Start of on-the-fly step calculation code, executed once per step */
|
||||||
|
if (stepsToGo == 0)
|
||||||
|
{
|
||||||
|
p = 0; // Not actually a zero step interval, used to switch stepping off
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
else if (stepsToGo >= accelSteps && (long)p > (long)ps) // Changed to make ramps even length
|
||||||
|
/* Speeding up */
|
||||||
|
{
|
||||||
|
p -= deltaP;
|
||||||
|
}
|
||||||
|
else if (stepsToGo <= accelSteps)
|
||||||
|
/* Slowing down */
|
||||||
|
{
|
||||||
|
p += deltaP;
|
||||||
|
}
|
||||||
|
/* else p is unchanged: running at constant speed */
|
||||||
|
|
||||||
|
/* End of on-the-fly step calculation code */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Work out how far the stepper motor still needs to move */
|
||||||
|
long computeStepsToGo()
|
||||||
|
{
|
||||||
|
if (direction == FWDS)
|
||||||
|
{
|
||||||
|
return targetPosition - currentPosition;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return currentPosition - targetPosition;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Set the target position and determine direction of intended movement */
|
||||||
|
void goToPosition(long newPosition)
|
||||||
|
{
|
||||||
|
targetPosition = newPosition;
|
||||||
|
if (targetPosition - currentPosition > 0)
|
||||||
|
{
|
||||||
|
direction = FWDS;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
direction = BWDS;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
349
res/lab_2/SimplisticRampStepper/SimplisticRampStepper.ino
Normal file
349
res/lab_2/SimplisticRampStepper/SimplisticRampStepper.ino
Normal file
@@ -0,0 +1,349 @@
|
|||||||
|
/* Stepper motor demonstration program written by Arthur Jones,
|
||||||
|
4 November 2018. Implements a simplistic and ineffective ramping
|
||||||
|
algorithm but provides framework for implementation of LeibRamp
|
||||||
|
algorithm described by Aryeh Eiderman, http://hwml.com/LeibRamp.pdf
|
||||||
|
|
||||||
|
Makes use of background work and some aspects of code developed
|
||||||
|
by Choaran Wang, 2017-18. This in turn incorporates some ideas
|
||||||
|
used in the AccelStepper library:
|
||||||
|
https://www.airspayce.com/mikem/arduino/AccelStepper/
|
||||||
|
|
||||||
|
Serial input aspects are based closely upon:
|
||||||
|
http://forum.arduino.cc/index.php?topic=396450
|
||||||
|
Example 4 - Receive a number as text and convert it to an int
|
||||||
|
Modified to read a long */
|
||||||
|
|
||||||
|
// #define USEINTERRUPTS
|
||||||
|
const int stepPin = 13;
|
||||||
|
const int dirPin = 9;
|
||||||
|
const bool FWDS = true;
|
||||||
|
const bool BWDS = false;
|
||||||
|
#ifdef USEINTERRUPTS
|
||||||
|
const long ticksPerSec = 16000000; // Clock speed of Arduino
|
||||||
|
#else
|
||||||
|
const long ticksPerSec = 1000000; // microseconds in this case
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* Define permissible parameters for motor */
|
||||||
|
// For testing by watching LED: try movements in order of 100 steps
|
||||||
|
//float accelSteps=20; /* leave this as a variable as we may over-write it */
|
||||||
|
//const float minSpeed = 2.0;
|
||||||
|
//const float maxPermissSpeed = 20.0;
|
||||||
|
//const float maxAccel = 10.0;
|
||||||
|
//const long stepLengthMus = 10000;
|
||||||
|
|
||||||
|
// For lab testing with real motor: try movements in the order of 3000 steps
|
||||||
|
float accelSteps=1000; /* leave this as a variable as we may over-write it */
|
||||||
|
const float minSpeed=10.0;
|
||||||
|
const float maxPermissSpeed=1000.0;
|
||||||
|
const float maxAccel=500.0;
|
||||||
|
const long stepLengthMus=100;
|
||||||
|
|
||||||
|
/* Intervals in milliseconds for user-defined timed loops */
|
||||||
|
const long printInterval = 1000;
|
||||||
|
|
||||||
|
/* Global variables used for loop timing */
|
||||||
|
unsigned long prevMillisPrint = 0; /* stores last time values were printed */
|
||||||
|
|
||||||
|
/* Global variables used in serial input */
|
||||||
|
enum {numChars = 32};
|
||||||
|
char receivedChars[numChars]; /* an array to store the received data */
|
||||||
|
long dataNumber = 0; /* Value read from serial monitor input */
|
||||||
|
boolean newData = false;
|
||||||
|
|
||||||
|
/* Global variables relating to stepper motor position counting etc. */
|
||||||
|
long stepsToGo; /* Number of steps left to make in present movement */
|
||||||
|
long targetPosition; /* Intended destination of motor for given movement */
|
||||||
|
volatile long currentPosition = 0; /* Position in steps of motor relative to startup position */
|
||||||
|
double maxSpeed; /* Maximum speed in present movement (not nec. max permitted) */
|
||||||
|
bool direction; /* Direction of present movement: FWDS or BWDS */
|
||||||
|
|
||||||
|
volatile float p; /* Step interval in clock ticks or microseconds */
|
||||||
|
float p1, ps; /* Minimum and maximum step periods */
|
||||||
|
double deltaP; /* You'll be able to get rid of this later */
|
||||||
|
double R; /* Multiplying constant used in Eiderman's algorithm */
|
||||||
|
|
||||||
|
/* Global variable used for noting previous time of a step in timed loop */
|
||||||
|
long prevStepTime;
|
||||||
|
|
||||||
|
void setup()
|
||||||
|
{
|
||||||
|
long stepsToGo = 0;
|
||||||
|
currentPosition = 0;
|
||||||
|
goToPosition(dataNumber);
|
||||||
|
pinMode(stepPin, OUTPUT);
|
||||||
|
pinMode(dirPin, OUTPUT);
|
||||||
|
Serial.begin(9600);
|
||||||
|
Serial.println("Enter target position in number of steps and hit return");
|
||||||
|
|
||||||
|
// If USEINTERRUPTS is defined at the start of the program this section will be used
|
||||||
|
#ifdef USEINTERRUPTS
|
||||||
|
cli();
|
||||||
|
TCCR1A = 0; // No output compare
|
||||||
|
TCCR1B = 0;
|
||||||
|
TCCR1B |= (1 << WGM12); //CTC mode
|
||||||
|
OCR1A = 0; // Set to zero for the present time: catch this to switch interrupt off
|
||||||
|
TCCR1B |= (1 << CS12); // 256 prescaler: overwritten in ISR
|
||||||
|
TIMSK1 |= (1 << OCIE1A); //enable timer compare interrupt
|
||||||
|
sei();
|
||||||
|
#else //
|
||||||
|
// Use built-in Arduino function micros() to get the time in microseconds since the program started running.
|
||||||
|
// Documentation: https://www.arduino.cc/reference/en/language/functions/time/micros/
|
||||||
|
prevStepTime = micros(); // This is a built-in Arduino function.
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
void loop()
|
||||||
|
{
|
||||||
|
unsigned long currentMillis = millis();
|
||||||
|
unsigned long currentMicros;
|
||||||
|
recvWithEndMarker();
|
||||||
|
stepsToGo = computeStepsToGo();
|
||||||
|
if (convertNewNumber())
|
||||||
|
{
|
||||||
|
/* Only get to this stage if there was new data to convert */
|
||||||
|
if (stepsToGo <= 0)
|
||||||
|
{
|
||||||
|
/* Only get to this stage if not busy, otherwise will have thrown away input */
|
||||||
|
goToPosition(dataNumber);
|
||||||
|
|
||||||
|
/* Delete these and replace with Leib Ramp formulae */
|
||||||
|
double maxInterval = ((double)ticksPerSec) / minSpeed;
|
||||||
|
ps = ((double)ticksPerSec) / maxPermissSpeed;
|
||||||
|
deltaP = (maxInterval - ps) / accelSteps;
|
||||||
|
/* End of section requiring redefinitions */
|
||||||
|
|
||||||
|
stepsToGo = computeStepsToGo();
|
||||||
|
maxSpeed = maxPermissSpeed;
|
||||||
|
if (2 * accelSteps > stepsToGo)
|
||||||
|
{
|
||||||
|
/* Definiiton of S where ther is no constant speed period - check it is still applicable */
|
||||||
|
accelSteps = (long)(stepsToGo / 2);
|
||||||
|
/* Need to redefine maxSpeed here as we never fully accelerate */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Will need to over-write these with correct initial value of p and p1, along with R */
|
||||||
|
p = maxInterval;
|
||||||
|
p1 = (double)ticksPerSec/minSpeed;
|
||||||
|
/* End of section requiring redefinitions */
|
||||||
|
|
||||||
|
ps = ((double)ticksPerSec) / maxSpeed; /* Eq 7 in paper: this is OK */
|
||||||
|
|
||||||
|
#ifdef USEINTERRUPTS
|
||||||
|
if (p != 0)
|
||||||
|
{
|
||||||
|
// Re-enable interrupts if non-zero steps
|
||||||
|
TIMSK1 |= (1 << OCIE1A);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#ifndef USEINTERRUPTS
|
||||||
|
|
||||||
|
/* Timed loop for stepping, and associated coding */
|
||||||
|
currentMicros = micros();
|
||||||
|
if (currentMicros - prevStepTime >= p)
|
||||||
|
{
|
||||||
|
moveOneStep();
|
||||||
|
prevStepTime = currentMicros;
|
||||||
|
computeNewSpeed();
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
/* Timed loop for printing */
|
||||||
|
if (currentMillis - prevMillisPrint >= printInterval)
|
||||||
|
{
|
||||||
|
/* Save the last time output was printed */
|
||||||
|
prevMillisPrint = currentMillis;
|
||||||
|
printLoop();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void moveOneStep()
|
||||||
|
/* Move a single step, holding pulse high for delayMicroSeconds */
|
||||||
|
{
|
||||||
|
if (p != 0) /* p=0 is code for "don't make steps" */
|
||||||
|
{
|
||||||
|
digitalWrite(stepPin, HIGH);
|
||||||
|
if (direction == FWDS)
|
||||||
|
{
|
||||||
|
/* Is something missing here? */
|
||||||
|
currentPosition++;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
/* Is something missing here? */
|
||||||
|
currentPosition--;
|
||||||
|
}
|
||||||
|
delayMicroseconds(stepLengthMus);
|
||||||
|
digitalWrite(stepPin, LOW);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void computeNewSpeed()
|
||||||
|
/* Calcuate new value of step interval p based on constants defined in loop() */
|
||||||
|
{
|
||||||
|
/* You may need to declare some temporary variables for this function... */
|
||||||
|
stepsToGo = computeStepsToGo();
|
||||||
|
|
||||||
|
if (stepsToGo == 0)
|
||||||
|
{
|
||||||
|
p = 0; // Not actually a zero step interval, used to switch stepping off
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
else if (stepsToGo > accelSteps && (long)p > long(ps))
|
||||||
|
/* Speeding up */
|
||||||
|
{
|
||||||
|
/* Delete this simplistic change to p and replace with something else */
|
||||||
|
p -= deltaP;
|
||||||
|
}
|
||||||
|
else if (stepsToGo <= accelSteps)
|
||||||
|
/* Slowing down */
|
||||||
|
{
|
||||||
|
/* Delete this simplistic change to p and replace with something else */
|
||||||
|
p += deltaP;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
/* Running at constant speed */
|
||||||
|
{
|
||||||
|
/* For simpplistic approach, p=p so do nothing to it.
|
||||||
|
But you will need to put something here for Leib ramp ... */
|
||||||
|
}
|
||||||
|
/* Update to step interval based on Leib ramp algorithm, using temporary variables */
|
||||||
|
|
||||||
|
/* Need to ensure rounding error does not cause drift outside acceptable interval range:
|
||||||
|
replace p with relevant bound if it strays outside - so need to write some code here */
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
long computeStepsToGo()
|
||||||
|
/* Work out how far the stepper motor still needs to move */
|
||||||
|
{
|
||||||
|
if (direction == FWDS)
|
||||||
|
{
|
||||||
|
return targetPosition - currentPosition;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return currentPosition - targetPosition;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void goToPosition(long newPosition)
|
||||||
|
/* Set the target position and determine direction of intended movement */
|
||||||
|
{
|
||||||
|
targetPosition = newPosition;
|
||||||
|
if (targetPosition - currentPosition > 0)
|
||||||
|
{
|
||||||
|
direction = FWDS;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
direction = BWDS;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void recvWithEndMarker()
|
||||||
|
/* Receive data from serial port finishing with "newline" character.
|
||||||
|
Based on http://forum.arduino.cc/index.php?topic=396450 Example 4 */
|
||||||
|
{
|
||||||
|
static byte ndx = 0;
|
||||||
|
char endMarker = '\n';
|
||||||
|
char rc;
|
||||||
|
|
||||||
|
if (Serial.available() > 0)
|
||||||
|
{
|
||||||
|
rc = Serial.read();
|
||||||
|
|
||||||
|
if (rc != endMarker)
|
||||||
|
{
|
||||||
|
receivedChars[ndx] = rc;
|
||||||
|
ndx++;
|
||||||
|
if (ndx >= numChars)
|
||||||
|
{
|
||||||
|
ndx = numChars - 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
receivedChars[ndx] = '\0'; // terminate the string
|
||||||
|
ndx = 0;
|
||||||
|
newData = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
bool convertNewNumber()
|
||||||
|
/* Converts character string to long integer only if there are new
|
||||||
|
data to convert, otherwise returns false */
|
||||||
|
{
|
||||||
|
if (newData)
|
||||||
|
{
|
||||||
|
dataNumber = 0.0; // new for this version
|
||||||
|
dataNumber = atol(receivedChars); // new for this version
|
||||||
|
newData = false;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void printLoop()
|
||||||
|
/* Print current position of stepper using timed loop */
|
||||||
|
{
|
||||||
|
/* Sample all counters one after the other to avoid delay-related offsets */
|
||||||
|
Serial.print("Current position = ");
|
||||||
|
Serial.print(currentPosition);
|
||||||
|
Serial.print("\r\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef USEINTERRUPTS
|
||||||
|
ISR(TIMER1_COMPA_vect)
|
||||||
|
/* Interrupt service routine which essentially just calls moveOneStep and computeNewSpeed.
|
||||||
|
However, it also changes the prescale value on-the-fly so that the full range of possible
|
||||||
|
step rates can be exploited, from around 0.25 Hz upwards, limited by step pulse width. */
|
||||||
|
{
|
||||||
|
if (p == 0)
|
||||||
|
{
|
||||||
|
// Disable interrupt to avoid endless calling of interrupt if not needed
|
||||||
|
TIMSK1 &= !(1 << OCIE1A);
|
||||||
|
}
|
||||||
|
moveOneStep();
|
||||||
|
|
||||||
|
/* Adapt prescaler to keep OCR1A as large as possible within acceptable range */
|
||||||
|
if (p < 65536)
|
||||||
|
{
|
||||||
|
// Prescaler 1
|
||||||
|
OCR1A = (long)p - 1;
|
||||||
|
TCCR1B = (TCCR1B & 0xF8) | 0x01;
|
||||||
|
}
|
||||||
|
else if (p < 524288)
|
||||||
|
{
|
||||||
|
// Prescaler 8
|
||||||
|
OCR1A = ((long)p >> 3) - 1;
|
||||||
|
TCCR1B = (TCCR1B & 0xF8) | 0x02;
|
||||||
|
}
|
||||||
|
else if (p < 4194304)
|
||||||
|
{
|
||||||
|
// Prescaler 64
|
||||||
|
OCR1A = ((long)p >> 6) - 1;
|
||||||
|
TCCR1B = (TCCR1B & 0xF8) | 0x03;
|
||||||
|
}
|
||||||
|
else if (p < 16777216)
|
||||||
|
{
|
||||||
|
// Prescaler 256
|
||||||
|
OCR1A = ((long)p >> 8) - 1;
|
||||||
|
TCCR1B = (TCCR1B & 0xF8) | 0x04;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// Prescaler 1024
|
||||||
|
OCR1A = ((long)p >> 10) - 1;
|
||||||
|
TCCR1B = (TCCR1B & 0xF8) | 0x05;
|
||||||
|
}
|
||||||
|
computeNewSpeed();
|
||||||
|
}
|
||||||
|
#endif
|
||||||
Reference in New Issue
Block a user