/* Stepper motor demonstration program written by Arthur Jones, 4 November 2018. Implements a simplistic and ineffective ramping algorithm but provides framework for implementation of LeibRamp algorithm described by Aryeh Eiderman, http://hwml.com/LeibRamp.pdf Makes use of background work and some aspects of code developed by Choaran Wang, 2017-18. This in turn incorporates some ideas used in the AccelStepper library: https://www.airspayce.com/mikem/arduino/AccelStepper/ Serial input aspects are based closely upon: http://forum.arduino.cc/index.php?topic=396450 Example 4 - Receive a number as text and convert it to an int Modified to read a long */ const int stepPin = 13; const int dirPin = 9; const bool FWDS = true; const bool BWDS = false; const long ticksPerSec = 1000000; // microseconds in this case /* Define permissible parameters for motor */ // For testing by watching LED: try movements in order of 100 steps //float accelSteps=20; /* leave this as a variable as we may over-write it */ //const float minSpeed = 2.0; //const float maxPermissSpeed = 20.0; //const float maxAccel = 10.0; //const long stepLengthMus = 10000; // For lab testing with real motor: try movements in the order of 3000 steps float accelSteps=1000; /* leave this as a variable as we may over-write it */ const float minSpeed=10.0; const float maxPermissSpeed=100000000.0; const float maxAccel=500.0; const long stepLengthMus=100; /* Intervals in milliseconds for user-defined timed loops */ const long printInterval = 1000; /* Global variables used for loop timing */ unsigned long prevMillisPrint = 0; /* stores last time values were printed */ /* Global variables used in serial input */ enum {numChars = 32}; char receivedChars[numChars]; /* an array to store the received data */ long dataNumber = 0; /* Value read from serial monitor input */ boolean newData = false; /* Global variables relating to stepper motor position counting etc. */ long stepsToGo; /* Number of steps left to make in present movement */ long targetPosition; /* Intended destination of motor for given movement */ volatile long currentPosition = 0; /* Position in steps of motor relative to startup position */ double maxSpeed; /* Maximum speed in present movement (not nec. max permitted) */ bool direction; /* Direction of present movement: FWDS or BWDS */ volatile float p; /* Step interval in clock ticks or microseconds */ float p1, ps; /* Minimum and maximum step periods */ double deltaP; /* You'll be able to get rid of this later */ double R; /* Multiplying constant used in Eiderman's algorithm */ /* Global variable used for noting previous time of a step in timed loop */ long prevStepTime; void setup() { long stepsToGo = 0; currentPosition = 0; goToPosition(dataNumber); pinMode(stepPin, OUTPUT); pinMode(dirPin, OUTPUT); Serial.begin(9600); Serial.println("Enter target position in number of steps and hit return"); prevStepTime = micros(); } void loop() { unsigned long currentMillis = millis(); unsigned long currentMicros; recvWithEndMarker(); stepsToGo = computeStepsToGo(); if (convertNewNumber()) { Serial.print("Converted number: datanumber is: "); Serial.println(dataNumber); // Only get to this stage if there was new data to convert if (stepsToGo <= 0) { // Only get to this stage if not busy, otherwise will have thrown away input goToPosition(dataNumber); Serial.print("Got target position: "); Serial.println(targetPosition); /* Define number of steps in acceleration phase using Equation (3) */ accelSteps = long(( maxPermissSpeed * maxPermissSpeed) / ( 2.0 * (double)maxAccel)); // Equation 4 but need to consider initial speed stepsToGo = computeStepsToGo(); maxSpeed = maxPermissSpeed; if (2 * accelSteps > stepsToGo) { // Define maximum speed in profile and number of steps in acceleration phase maxSpeed = sqrt(minSpeed * minSpeed + stepsToGo * maxAccel); // Modified version of eq. 5 accelSteps = (long)(stepsToGo / 2); } ps = ((double)ticksPerSec) / maxSpeed; // Eq 7 p1 = (double)ticksPerSec / sqrt( minSpeed * minSpeed + 2 * maxAccel); // Eq 17 but need initial velocity p = p1; R = (double) maxAccel / ((double)ticksPerSec * (double)ticksPerSec); // Eq 19 } } /* Timed loop for stepping */ currentMicros = micros(); if (currentMicros - prevStepTime >= p) { moveOneStep(); prevStepTime = currentMicros; computeNewSpeed(); } /* Timed loop for printing */ if (currentMillis - prevMillisPrint >= printInterval) { // save the last time you printed output prevMillisPrint = currentMillis; printLoop(); } } /* Move a single step, holding pulse high for delayMicroSeconds */ void moveOneStep() { if (p != 0) /* p=0 is code for "don't make steps" */ { digitalWrite(stepPin, HIGH); if (direction == FWDS) { /* Is something missing here? */ digitalWrite(dirPin, HIGH); currentPosition++; } else { /* Is something missing here? */ digitalWrite(dirPin, LOW); currentPosition--; } delayMicroseconds(stepLengthMus); digitalWrite(stepPin, LOW); } } /* Calcuate new value of step interval p based on constants defined in loop() */ void computeNewSpeed() { double q; double m; stepsToGo = computeStepsToGo(); /* ----------------------------------------------------------------- */ /* Start of on-the-fly step calculation code, executed once per step */ if (stepsToGo == 0) { p = 0; // Not actually a zero step interval, used to switch stepping off return; } else if (stepsToGo > accelSteps && (long)p > long(ps)) //Speeding up { m = -R; // definition following equation 20 } else if (stepsToGo <= accelSteps) // Slowing down { m = R; } else // Running at constant speed { m = 0; } /* Update to step interval based on Eiderman's algorithm, using temporary variables */ q = m * p * p; // this is a part of optional enhancement p = p * ( 1 + q + 1.5 * q * q); // this is an enhanced approximation -equation [22] /* Need to ensure rounding error does not cause drift outside acceptable interval range: replace p with relevant bound if it strays outside */ if (p < ps) { p = ps; } if (p > p1) { p = p1; } /* End of on-the-fly step calculation code */ /* ----------------------------------------------------------------- */ } /* Work out how far the stepper motor still needs to move */ long computeStepsToGo() { if (direction == FWDS) { return targetPosition - currentPosition; } else { return currentPosition - targetPosition; } } /* Set the target position and determine direction of intended movement */ void goToPosition(long newPosition) { targetPosition = newPosition; if (targetPosition - currentPosition > 0) { direction = FWDS; } else { direction = BWDS; } } /* Receive data from serial port finishing with "newline" character. Based on http://forum.arduino.cc/index.php?topic=396450 Example 4 */ void recvWithEndMarker() { static byte ndx = 0; char endMarker = '\n'; char rc; if (Serial.available() > 0) { rc = Serial.read(); if (rc != endMarker) { receivedChars[ndx] = rc; ndx++; if (ndx >= numChars) { ndx = numChars - 1; } } else { receivedChars[ndx] = '\0'; // terminate the string ndx = 0; newData = true; } } } bool convertNewNumber() /* Converts character string to long integer only if there are new data to convert, otherwise returns false */ { if (newData) { dataNumber = 0.0; dataNumber = atol(receivedChars); newData = false; Serial.println(dataNumber); return true; } else { return false; } } /* Print current position of stepper using timed loop */ void printLoop() { /* Sample all counters one after the other to avoid delay-related offsets */ Serial.print("Current position = "); Serial.print(currentPosition); Serial.print("\r\n"); Serial.print("p = "); Serial.print(p); Serial.print("\r\n"); }