A BEGINNER’S GUIDE
TO
C PROGRAMMING V1.2

LAB EXERCISES

JAMES BONNYMAN
ED. LOUISE BROWN

LOUISE.BROWNQNOTTINGHAM.AC.UK

The University of Nottingham
UK

2022
THE UNIVERSITY OF NOTTINGHAM

mailto:Louise.Brown@Nottingham.ac.uk

Some common mistakes in C

When starting to learn C, there are a few common mistakes that people make... hopefully having
them here will help you as you program (please use the remaining space to add any other ones
you think of - and let me know to add them to the list!).

e (is case sensitive - as such, X is not the same as x

Variables must be defined before they can be used

New variables do not contain zero when defined

Each line of code in C ends with a semicolon

Arrays in C start at zero

Contents

(1 _Introduction|

2 Designing Code
2.1 Tntroduction - and free softwarelo

8 Program Flow in Code]

[9 Loops - repeating things|
9.1 Exercise 1l

DO OO

-~

95 Exercise bl
96 BExercise®l
9.7 BExercise 7
I:).ES E:;g:l!:i:ig: zil -------------------------

(15 Pointers (part 2)|

(16 Dynamic Memory Allocation|

(19 Advanced Data Types in C|

20

21
21
21
21

22
22
22
23

24

25
25
25
25

26
26
26

27
27
27
27
27
28
28

29

22 A few more examples to try|

31
31

32
32
32

33

Chapter 1

Introduction

Remember when developing code for the module (and indeed any time you develop code) you
must apply, from the outset, best practice.

The following, if not followed, will cost marks in the formally assessed laboratory exercises - the
same criteria will also be applied when marking any code you develop as part of project and/or
exam work associated with this or any other course!

e Code must be designed before you start writing it (this will save you an enormous amount
of time!).

Code MUST be commented as you develop it - NOT AT THE END

Variable names MUST be meaningful for the values they are storing

Function names MUST indicate the task they perform

Global variables are not to be used in these exercises

Input should always be checked to see if values provided are valid

When a task can fail (e.g. opening a file, allocating memory) this MUST be checked for
(with any appropriate action taken).

Chapter 2
Designing Code

2.1 Introduction - and free software

The laboratory exercises for chapter [2[will introduce you to draw.io, a drawing package that is
particularly useful for drawing flow charts. This can be accessed at https://www.drawio.com/.

2.2 Exercise 1

Use draw.io to draw out a flowchart for a quadratic equation & linear equation solver.

In addition to the features outlines in the case study in chapter 2 of the course it should be
extended to solve linear equations.

In addition to your flowchart

e Provide a table that lists the inputs and outputs indicating the type of number each will
be (real, integer etc.).

e Generate a table of test data that could be used to validate the correct operation of the
code.

2.3 Exercise 2

Develop a flow chart for a program that is able to calculate the area of a triangle given the lengths
of the three sides. Your flowchart should include logic in your code to reject ALL invalid input
cases,

In addition to your flowchart

e Provide a table that lists the inputs and outputs indicating the type of number each will
be (real, integer etc.).

e Generate a table of test data that could be used to validate the correct operation of the
code.

https://www.drawio.com/

Chapter 3
Hello World

This exercise is designed to get you familiar with Code::Blocks to create new projects, edit,
compile and execute code
3.1 Exercise 1

Following the guide in Appendix B of the course book create a new folder and ’.c’ file. After
following the instructions you will have created a program which,when run will display ‘Hello
World’” in a new command window - once you have achieved this, you are on your way to being
a programmer!

NOTE: It is quicker to compile your code if you work on the local drive of the PC and, when
the session is complete you then copy your work to your OneDrive (or other media).

3.2 Exercise 2

Modify the code to change the text displayed on the screen.

You might like to read ahead to see what the \n does to the text as written to the screen (or
add a few extra words and see if you can work this out).

Chapter 4
The very basics of C

There are no specific lab exercises associated with this chapter

Chapter 5
Output

The exercises in this chapter will allow you to gain skills in writing out information to the screen,
both as fixed text and displaying the values stored in variables (which themselves may contain
the result of a calculation).

Remember to comment your code and to use meaningful names for variables.

5.1 Exercise 1

Please type in, compile and run the chapter 5 example program ‘c5\displaying_variables.c’.

5.2 Exercise 2

Define a number of different numerical variable types (int, char, float) and assign them values
(either when declared or as a second step).

Using the printf statement and the appropriate formatting characters display these on the screen,
each value to be separated by a single space.

5.3 Exercise 3

Modify the code you have written for exercise 2 such that each value is displayed on a new
line.

5.4 Exercise 4

You are required to write code to calculate the volume and surface area of a sphere or radius r.
The equations for these are presented below

4mr3
3

Volume =
Surface Area = 4mr?
As we have not yet covered reading in values, the value for r will need to be set in the code.
In your calculations,

e Use M_PI to obtain a value for 7 (note: you need add #include <math.h> at the top of
your program to be able to use this definition)

e For r? use r*r (r"2 means something else in C!), for r® use r*r¥*r

5.5 Exercise 5

Modify the code from exercise 4 such that the answer is displayed to 2 decimal places.

Chapter 6
Operators in C

These exercises show you how the order of the operator ++ and —— operator work.
You will also gain further use of printf to display the value held in a variable.

Following this, you will test the bitwise operator functions.

6.1 Exercise 1
Please type in, compile and run the chapter 6 example program ‘c6\inc_dec_example.c’.

Modify the code so that the current values of the variable are displayed (using printf and the
appropriate place holder) following each assignment and increment or decrement operation.

6.2 Exercise 2

For this exercise please define all variables as unsigned int

Declare variables A and B of this type and assign them the values 60 and 13 respectively (as
per the values used in Section 6.5).

Declare a third variable R which will be used hold the result of the various bitwise opera-
tions.

Develop code that performs each of the bitwise operations from section 6.5, displaying the result
of the calculation on the screen (using printf).

6.3 Exercise 3

Modify the code from Exercise 2 to declare the values of A and B in hexadecimal and to print
out the results with the hex number in the form Oxnn.

10

Chapter 7

Input: Reading in information

The exercises in this chapter will give you experience in reading input from the user (both
numerical and text values) and displaying this information on screen.

7.1 Exercise 1

Please type in, compile and run the chapter 7 example program ‘c7\scanf_example_1.c’.

7.2 Exercise 2

Modify the code you developed in section so that the user is prompted to enter the value for
r - this value is then read in through the use of scanf.

Note: For this exercise there is no need to validate user input (this will be done in later exer-
cises).

7.3 Exercise 3
The surface area of a cylinder can calculated as
SA = 2mr? + 27rh

Develop code where the user is prompted to enter values for r and h. The values can be read
separately or through a single scanf statement.

The result of the calculation is to be displayed to 3 decimal places.
In your calculations,

e Use M_PI to obtain a value for 7 (note: you need add #include <math.h> at the top of
your program to be able to use this definition)

e For r? use r*r (or, as an alternative, you can use pow(r,2))

Note: For this exercise there is no need to validate user input (this will be done in later exer-
cises).

7.4 Exercise 4

Develop a short program that prompts you to enter your name which is then displayed on the
screen prefixed with 'Hello’ (e.g. if you entered James it would display Hello James.

Use both scanf, gets to read in your name.
For each case, note what happens if you enter both your first name and surname.

Note: Remember to define a string that is long enough to hold all the characters to be entered
plus one extra for the ’end of string’

11

7.5 Exercise 5

Develop a program that first prompts the user to enter their name after which they are requested
to enter their age.

The values entered should be stored in suitably declared variables that have names appropriate
to the information they will be storing.

Using a single printf statement, display the information entered in the format presented be-
low

Hello {name}
You are {age} old

Where {name} and {age} are replaced with the values entered by the user

12

Chapter 8

Program Flow in Code

The laboratory exercises up to this point have all consisted of programs where every line of
code is executed. As discussed in lectures, there are cases where portions of code are only to be
executed if a test condition is met.

The exercises in this chapter will skill you in using the different approaches to implementing
program flow.

You will complete the lab be enhancing code previously developed to include error checking to
reject invalid input.

8.1 Exercise 1
Please type in, compile and run the chapter 8 example program ‘c8\if_example.c’.

Modify the code so that the user is prompted to enter values for a & b - test that the condition
statements work as you would expect for different values of a & b.

8.2 Exercise 2

Develop a program that prompts the user to enter an integer value.

If the value is in the range 0 to 10 (inclusive) the program should display on the screen the text
‘The number is in range’, for all other values no message should be displayed.

8.3 Exercise 3

Modify the code from section so that if the number is not in the range specified the text
“The number is not in range’ is displayed.

8.4 Exercise 4

Develop a program that, based on the input of an integer value from the user, displays a message
as defined in table 8.1

Age Range Message to Display
<=5 Still a baby
> 5 and <= 12 The junior years
> 12 and < 20 Teenage Years
>= 20 Downbhill all the way now!

Table 8.1: Messages to display for given age ranges

13

8.5 Exercise 5

Using the if/else if/else approach develop code that, based on user input of an integer displays
a message as defined in table 8.2.

If the value entered is not listed then the default message 'Invalid input’ should be displayed.

Value | Message to Display
0 Black
Brown
Red
Orange
Yellow
Green
Blue
Violet
Grey
White

O || U =] W DN —

Ne}

Table 8.2: Messages to display for given inputs

8.6 Exercise 6
Repeat task [8.5] using the switch-case approach

8.7 Exercise 7

This final task has you improve existing code to make it reject invalid user input (that may
cause the code to crash or which would result in a ‘meaningless’ answer).

Modify the code you previously developed to calculate the surface area of a cylinder (section
such that the calculation is only performed if both inputs are valid.

You are free to adopt any approach to this (there a number of options) - you may be asked to
justify your choice by a demonstrator!

14

Chapter 9
Loops - repeating things

Loops play a crucial role in programming, allowing code to be repeatedly executed while a test
condition is met or for a range of numbers. The exercises in this chapter are designed to give
you experience in using all types of loops.

9.1 Exercise 1

Please type in, compile and run the chapter 7 example program ‘c9\while_loop.c’.

9.2 Exercise 2

Modify the loop code (i.e. that controlled by the while condition) to include a condition such that
if the age entered is 18 or 21 it additionally displays the message ‘You have come of age’

9.3 Exercise 3

Develop a program that first asks the user to enter their name, it should then continually display
the name entered on a new line (with no method of the loop breaking)

Hint: To stop the code press the Control Key and the letter C at the same time

9.4 Exercise 4

Implement the code from using a do-while loop, note how in this case when the age entered
is zero it is displayed on the screen as part of the ‘You are...” output.

9.5 Exercise 5

Develop a program that counts from 1 to 15 inclusive and displays the value of the loop counter
on the screen - each value to be displayed on the same line, separated from the previous by a
single space (i.e. 1234 ... 15)

9.6 Exercise 6

Add additional code to that developed in section so that the lower and upper values of the
loop are entered by the user (hint: you will need to declare two additional variables for this task
and use these in place of the 1 and 15).

What test should you put in place to ensure the loop will execute as expected (consider the
values a user might enter, perhaps if they misread the order to enter them).

Keep a copy of this code - you will be modifying it in the next two exercises

15

9.7 Exercise 7

With for loops, we often make use of the loop variable within a calculation (perhaps displaying
the output within the loop).

Expand the code from section to display both the value of the loop variable and this value
squared (remember not to use "2 to square a number - for reasons you now know!).

This time put the pairs of values on a new line.

9.8 Exercise 8

With for loops, as you have seen, we can make use of the loop variable within a calculation,
displaying the output within the loop.

This task is a little different! This time you are required to expand the code from section
to keep a running sum of the loop variable, displaying the final result only when the loop
terminates.

E.g. if the loop counted from 1 to 5 inclusive the final result would be 142434445 = 15, if the
loop was from 1 to 10 inclusive it would be 1+2+3+4+45+46+7+8+9+10 = 55

16

Chapter 10
Functions (part 1)

The lab exercises associated with this chapter are designed to give you experience in developing
functions that take a number of parameters and return a value.

You may find it helpful when undertaking these tasks to consult the 'Function Flowchart” from
Appendix C of the course handbook.

For these exercises you will need to develop both in main() and a function (or functions) external
to main().

10.1 Exercise 1

Please type in, compile and run the chapter 10 example program ‘c10\function_example.c’.

10.2 Exercise 2

When working with the trigonometric functions in C we need to use radians.

This exercise will requires you to develop a function (that will be external to main) that when
passed a float will return this value converted to radians.

The conversion you need to use is

mxdegrees
180.0

radians = (remember to use M_PI for)

Remember, when developing your function to use meaningful names both for the function, the
variables passed and any variables you declare locally (both in main() and in your function).

To test your function, develop code in main() that prompts the user to enter a value in degrees,
this should then be passed to the function you have developed.

You can either store the result in a variable and display this (using printf) or, if you prefer, use
the function itself in the printf statements.

10.3 Exercise 3

This exercise is designed to show you how well written code can be reused!
Create a new program and paste in the code you developed for section
Now paste, above main(), the function you developed in section [10.2]

Change the code in the loop to call the function (rather than calculating the square of the
loop variable). Remember to change the formatting character as the second value you will be
displaying will now be a float.

17

10.4 exercise 4

This (and the next exercise) will bring together a few aspects of the module to develop a rather
‘clever’ piece of code.

It is possible to determine the day of the week based for any given date using the following
approach

29 2

Assume that "year”, "month” and ”"day” have been given as three integers, for example 1965,
8, 23 respectively for August 23rd 1965. The calculation continues.

if (month < 3)

month=month+12;
year=year-1;

Then

nd = (13*m05nth+3 i day + year + ye4a7’ . yleoaor + 3/46068") mod 7

You are required to develop a program that, in main(), prompts the user to enter values for day,
month and year (store these in integer variables). You can assume that the values entered will
be valid (validating them would be too complex a task).

Develop a function designed to receive day, month and year as parameters (these MUST be
defined as integers for this to work) and then use the function provided to calculate nd. Note:
To calculate modulus in C use % (e.g. a % b means a mod b).

Pass the values entered to your function and store the value returned in (another) integer vari-
able.

Display the calculated value on the screen; this value gives the day of the week (based on
0=Monday, 1=Tuesday etc.).
10.5 exercise 5

To further improve our ’day of the week’ program we are now going add a second function
to which we pass the calculated value. This function should display the relevant day of the
week.

The function will not be returning a value (only receiving a single integer) so the return type
will be void.

You can use any of the different methods to display the day of the week based on the value
passed (e.g. if, if /else if /else if/...., switch-case).

18

Chapter 11
Arrays

11.1 Exercise 1

Please type in, compile and run the chapter 11 example program ‘c11\array_loop_example_1.c’.

11.2 Exercise 2

You are required to write a program that creates a float array of size 90.

Using a for loop, populate the array element whose index is the value of the loop variable with
the value of the loop variable (e.g. array[0] = 0, array[l] = 1 etc.)

Using a second loop display the loop index and the value in the array - each pair of numbers is
to be displayed on a new line.

11.3 Exercise 3
Again we see how well written functions can be reused!
Copy the code you developed for into a new project.

Copy the function you developed for converting from degrees to radians (section[10.2]) into your
code (above or below the main() code - your choice).

Modify the code so that the number stored in the array is not the array index but the value of
the array index converted to radians (i.e. pass the loop variable to your function and store the
result in the array).

19

Chapter 12
Variables - Part 2

There are no specific lab exercises associated with this chapter

20

Chapter 13
Pointers (part 1)

These exercises are designed to show you how the value in an existing variable can be modified
if we know the address at which it is stored.

This you should now appreciate is how scanf works. We pass the address of an existing variable,
scanf interprets what is entered at the keyboard and then stores the result at the address of the
variable - we can then make use this variable as required in our code.

13.1 Exercise 1

Please type in, compile and run the chapter 13 example program ‘c13\accessing_via_pointers_1.c’.

13.2 Exercise 2

Modify the example code to change the value stored in ¢ to 20 via the pointer before it is
used to set the value of d (i.e. the value of d, when displayed, should be 20).

13.3 Exercise 3

Copy the code developed for section to a new project and modify it to work with float
variables.

21

Chapter 14
Functions (part 2)

In this chapter, the exercises are designed to show you how to develop functions that can return
multiple values.

We will (again) be making use of the 'degree to radians’ functions previously developed (showing
how re can easily reuse well written code).

14.1 Exercise 1

In this exercise you will be developing a function that is passed x & y coordinates and return
the spherical polar coordinates of this point.

The equations you need to perform the calculation are

r =22+ y>? theta = ¢

Develop a function that is passed four parameters. The first two should be for x & y (which
can be passed as values), the second two for r & theta (these need to be declared such as they
receive the addresses of existing variables).

Consider carefully the type of variables to use to make this a practical, general function.

Develop main() code that prompts the user to enter values for x & y. These should then be
passed to the function (along with the addresses of suitably declared variables to receive the
result).

Display on the screen the two values returned from the the function.

14.2 Exercise 2

This exercise will see you developing a function that is passed an angle in degrees and returns four
values, the value converted to radians and the sine, cosine and tangent of the angle passed.

To be efficient the code you develop will perform the degrees to radian calculation using your
previously developed function. This value is then passed to the sine, cosine and tangent functions
(as these work on angles in radians).

To demonstrate your function, develop code in main() that prompts the user to enter a value in
degrees. This value is then to be passed to your function (along with the addresses of suitably
declared values to store the four returned values).

All values are then to be displayed on the screen from within main().

22

14.3 Exercise 3
Copy the code you have developed for section

Rather than have the user enter a single value, have them enter two integer values.

Using a for loop, count over this range defined by these two values. Pass the loop value to the
function (rather than then value entered by the user as before) and, as before, display all the
values on the screen with the float values displayed to a precision of 3 decimal points).

If you have time, perhaps add headers to the output (using a printf statement before the loop
starts).

When run, if the limits for the loop were 10 and 20 the output should resemble that below

Degs Rad sin cos tan

10 0.175 0.174 0.985 0.176
11 0.192 0.191 0.982 0.194
12 0.209 0.208 0.978 0.213
13 0.227v 0.2256 0.974 0.231
14 0.244 0.242 0.970 0.249
15 0.262 0.259 0.966 0.268
16 0.279 0.276 0.961 0.287
17 0.297 0.292 0.956 0.306
18 0.314 0.309 0.951 0.325
19 0.332 0.326 0.946 0.344
20 0.349 0.342 0.940 0.364

23

Chapter 15
Pointers (part 2)

There are no specific lab exercises associated with this chapter

24

Chapter 16

Dynamic Memory Allocation

The exercises in this chapter will familiarise you with the process for dynamically allocating
memory in C using calloc or malloc.

16.1 Exercise 1

Please type in, compile and run the chapter 16 example program ‘c16\alloc_example 4.c’.

16.2 Exercise 2

Modify the code to prompt the user how big the array is to be and use this user entered
value to allocate memory (i.e. replace the 10000’ with the variable in wish the user input was
stored).

16.3 Exercise 2

As you have done previously (section), add a loop to the code that populate the array
element whose index is the value of the loop variable the value of the loop variable (e.g. array|0]
= 0, array[1] = 1 etc.) - the difference here is that the upper limit is defined by the value entered
by the user.

Display the loop variable and the value stored at that index in the array - this can be within
the same loop or, if you prefer in a second loop.

25

Chapter 17
Functions (Part 3)

17.1 Exercise 1

Please type in, compile and run the chapter 17 example program ‘c17\arrays_to_functions_example_2.c’.

17.2 Exercise 2

Using the code from as a template, modify the code (or better yet, write it from scratch!)
to meet the following requirements

e The array should be of type float

e The populate function should by modified to populate the array with the value of the loop
variable converted to radians [*]

e The display function should be updated to display the float values passed to 3 decimal
places of precision.

[*] You may have a function written that you can use to do this :-)

26

Chapter 18
Using Files

This chapter will skill you in reading & writing files - both text and binary.
18.1 Exercise 1

Please type in, compile and run the chapter 18 example program ‘c18\text_file_example.c’.

18.2 Exercise 2

Modify the code from [18.1] so that the value of the loop counter and this value squared are
written to the text file.

Make the necessary changes to the code to enable it to read the data back from the file, displaying
the pairs of values on the screen (hint: you will need to declare a second variable into which you
read the squared value).

18.3 Exercise 3

Add additional code to that developed for to prompt the user to enter the name for the
file.

Modify the fopen statements to use the file name entered by the user (rather than the fixed file
name ‘numbers.txt’).

18.4 Exercise 4

This exercise is going to take some existing code and provide additional functionality.

It is quite a challenging exercise so take a little time to think about it before you start cod-
ing.

As a starting point, copy the code you developed for Section [17.2]

You are now going to create an additional function (based on the ’display on screen’ function)
that writes the output to a specified file name, as such, in addition to the array it needs to be
passed an additional parameter which is the file name (that has been declared and entered in
main()).

All the checking that the file can be opened, writing to the file and closing of the file is to be
done in this new function.

27

18.5 Exercise 5

We are now going to make a final addition to the code from - to also write the data to a
binary file (the name for which needs to be prompted for in main()).

In some ways this is easier to do as we can write the entire array with a single fwrite instruction -
the downside is that we cannot 'view’ the data written to the file (without using other code).

One way you can check your data was written correctly is to load it into Matlab - a sample script
and 'how to’ are available on the moodle page for the module in the section "utilities’.

In the next exercise we will read this binary file.

18.6 Exercise 6

Using the code from example 18.3 in the lecture notes, develop a program that within main()
opens the binary file created in and reads the values into a suitably defined array (you can
use q fixed array or, if you wish to practice your skill, use malloc/calloc to define the array).

Note that in example code for 18.3 both a single variable and an array are written/read - you

will only be reading an array (so the key lines, apart from the declaration of the variables, are
lines 37-60 excluding lines 46 & 47).

28

Chapter 19
Advanced Data Types in C

This chapter will focus on the use of structures in C as they can make programming (especially
where a large number of parameters need to be passed to a function) considerably easier.

You will also see how a structure can be written and read from a file.

19.1 Exercise 1

Define a struct (outside of main) that contains the following members
e age - an integer
e forename - a string that can hold up to 30 characters
e surname - a string that can hold up to 50 characters

Within main() declare a variable of this type.

Using scanf read into each member information that is appropriate for you - remember that to
read into a member you need to use the dot operator to specify the member (if you are not sure,
ask a demonstrator for help).

Using printf, display the stored information on the the screen - remembering again to use the dot
operator to select a member of the structure (and to use the appropriate formatting character -
e.g. for ‘age’ it will be %d).

19.2 Exercise 2

We can pass a structure to a function the same as any other variable in C - the difference is
that, by doing this, we are passing all the members of the structure (so this approach is great if
you need to pass a very large number of parameters to a function).

Develop a void function that received the populate structure from exercise and use this to
displays the information in the structure (rather than doing this in main).

19.3 Exercise 3

We are now going to see how we can add an additional item to our structure and how it is then
immediately available to any function to which the structure is passed (using the approach so
far adopted, we would need to update the function definition and add the new parameter in all
function calls - which could take a very long time!).

Copy the code from section into a new project.

Add a new integer member ‘year_of_birth’ to the structure and add additional code to main to
prompt for and store a value in this new structure member.

Update the function to display this additional value.

29

19.4 Exercise 4

Another time when a structure can be of particular use is as a file header (information at the
start of a file that describes the contents). We can read this information in ‘one go’ and, based
on this, know how to process the information.

Note: When reading/writing we use fread/fwrite as - we can still use sizeof() to obtain the
total size of the structure (it ’adds’ together the sizes of the individual members for us).

This exercise requires you to extend the code from to ask if the user wishes to enter data
and write this to a file or to read an existing file and to display the information, as such you will
need to add program flow logic to the code.

Copy the code developed for section into a new project.
Prompt the user to choose to ether

e (1) enter data values and store them to a file

e (2) Read data from a file and display it on the screen

In the case of (1) you can use a fixed file name when developing the code (though you may later
like to prompt for this as you did in the exercise in section [I8.3)). You should then open the file
(with checking!) in binary mode for writing and use fwrite to save the data to file - remember
then to close the file.

For (2) you need to open a file created from running your code and having selected (1), as before
the file name can be fixed or you can ask the user to enter this. Open the file (with checking)
and read the data into the structure (using fread). Pass the now populated structure to the
function previously developed (so displaying the information read on the screen).

30

Chapter 20

Compiler Preprocessor Directives

This exercise will have you update one of your existing programs to provide a ’debug’ mode that
can be turned on/off as required (this is something that you may find particularly useful to be
able to do in the project work).

20.1 Exercise 1

Select any of the programs you have written (ideally one that makes use of functions) and copy
the code to a new project.

Add in some 'debug’ messages to the code that are only compiled into the code when the compiler
variable DEBUG is defined (as per example 20.2 in the course book).

Such messages might include ‘Program Started’, ‘Function {name of function} started’, ‘Function
ending’ etc.

You can even have different compiler variables to turn on different debugging messages/levels
e.g.
e define a compiler variable DEBUG_MAIN and use this to turn on/off messages in main()

e define a compiler variable DEBUG_FNS and use this to turn on/off messages in functions
you write outside of main()

NOTE: Although this exercise uses DEBUG as compiler variable, you can use (within the usual
constraints) any name you wish (e.g. DEMO_MODE, APPLE_BUILD etc.).

31

Chapter 21

Command Line Arguments

Command line arguments are useful to us as they allow us to pass information directly into our
code (without the need to any additional user input).

We often make use of this to ‘batch process’ where we create a file containing the commands we
would type at the keyboard and have the operating system ‘read’ from this file (leaving us free
to do other things as we do not have to wait for the program to finish so we can start the next
‘run’).

Note: To pass arguments into code being executed by Code::Blocks you need to set the ar-
guments; to do this select ‘Project’ from the menu, then ‘Set programs’ arguments...”. Make
sure you have the same target set as you are compiling for (Debug/Release) and then enter the
arguments in the lower box (leaving a space between items).

21.1 Exercise 1

Create a new project based on the code example from the lecture ¢21\get_them.c

Set arguments for the program and run the code to confirm you are able to set values to be read
into your programs.

You will notice that there is one additional item displayed that you did not enter, this is the
item in argv[0] which is ALWAYS the name of the program being executed.

21.2 Exercise 2

You are now going to modify the code you developed to display the day of the week based on
the user entering three integer values for day, month & year.

If there are exactly three items passed to the program (arge will be 4 in this case - the file name
& three parameters) your code should take the values from the command line (you may assume
they are entered in the correct order).

If the value of argc is any value other than 4 the code should execute as it previously did
(prompting the user to enter values for day, month & year).

32

Chapter 22

A few more examples to try

33

	Introduction
	Designing Code
	Introduction - and free software
	Exercise 1
	Exercise 2

	Hello World
	 Exercise 1
	 Exercise 2

	The very basics of C
	Output
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	Operators in C
	Exercise 1
	Exercise 2
	Exercise 3

	Input: Reading in information
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	Program Flow in Code
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7

	Loops - repeating things
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 8

	Functions (part 1)
	Exercise 1
	Exercise 2
	Exercise 3
	exercise 4
	exercise 5

	Arrays
	Exercise 1
	Exercise 2
	Exercise 3

	Variables - Part 2
	Pointers (part 1)
	Exercise 1
	Exercise 2
	Exercise 3

	Functions (part 2)
	Exercise 1
	Exercise 2
	Exercise 3

	Pointers (part 2)
	Dynamic Memory Allocation
	Exercise 1
	Exercise 2
	Exercise 2

	Functions (Part 3)
	Exercise 1
	Exercise 2

	Using Files
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6

	Advanced Data Types in C
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Compiler Preprocessor Directives
	Exercise 1

	Command Line Arguments
	Exercise 1
	Exercise 2

	A few more examples to try

