51 lines
828 B
Markdown
51 lines
828 B
Markdown
|
---
|
||
|
author: Akbar Rahman
|
||
|
date: \today
|
||
|
title: MMME2046 // Control
|
||
|
tags: [ mmme2046, uon, uni, control ]
|
||
|
uuid:
|
||
|
---
|
||
|
|
||
|
# System and Block Diagrams
|
||
|
|
||
|
# Laplace Transform
|
||
|
|
||
|
$$F(s) = \mathscr L {F(t)} = \int^\infty_0 f(t)e^{-st} \mathrm{d}t$$
|
||
|
|
||
|
where $s = \alpha + j\omega$
|
||
|
|
||
|
The function $F(s)$ is often much easier to manipulate than periodic function $f(t)$.
|
||
|
|
||
|
## Final Value Theorem
|
||
|
|
||
|
As $f(t)$ tends to infinity, $sF(s)$ tends to 0.
|
||
|
|
||
|
## Example
|
||
|
|
||
|
$$\dot x_o = ax_o = ax_i$$
|
||
|
|
||
|
where $x_o$ is the output and $x_i$ is the input
|
||
|
|
||
|
Take the Laplace transform:
|
||
|
|
||
|
$$sX_o(s) + aX_o(s) = aX_i(s)$$
|
||
|
|
||
|
Rearrange to get equation for the transfer function:
|
||
|
|
||
|
$$G(s) = \frac{X_o}{X_i} = \frac{a}{s+a}$$
|
||
|
|
||
|
$$ X_o = GX_i $$
|
||
|
|
||
|
If $X_i$ is a unit step, then:
|
||
|
|
||
|
$$X_i = \frac1s$$
|
||
|
|
||
|
and
|
||
|
|
||
|
$$X_o = \frac{a}{s(s+a)}$$
|
||
|
|
||
|
Taking the inverse gives:
|
||
|
|
||
|
$$X_0 = 1 - e^{-at}$$
|
||
|
|