notes/uni/mmme/2046_dynamics_and_control/control.md

103 lines
2.2 KiB
Markdown
Raw Normal View History

2023-01-30 20:36:47 +00:00
---
author: Akbar Rahman
date: \today
title: MMME2046 // Control
tags: [ mmme2046, uon, uni, control ]
2023-02-06 17:11:38 +00:00
uuid: 73e04dd2-ee4c-4952-a9b7-7df3930d2d2d
2023-02-18 20:27:04 +00:00
lecture_slides: [ ./lecture_slides/Control 1 2023.pdf, ./lecture_slides/Control 2 2022.pdf, ./lecture_slides/Control Lecture 3 2022.pptx ]
exercise_sheets: [ ./exercise_sheets/control.pdf, ./exercise_sheets/control_sols_odd.pdf ]
2023-01-30 20:36:47 +00:00
---
2023-02-18 20:27:04 +00:00
# Errata
2023-02-06 17:11:38 +00:00
2023-02-18 20:27:04 +00:00
## Exercise Sheets
### ES1, Q5 (p3)
Output column on row 3c should be $h_2$ not $h_3$.
## Lecture Slides 2 p26
2023-02-06 17:11:38 +00:00
First line should be
$$C(s) = \frac{5}{s(s+5)} = \frac 1s \frac{1}{1+0.2s}$$
2023-01-30 20:36:47 +00:00
# System and Block Diagrams
# Laplace Transform
$$F(s) = \mathscr L {F(t)} = \int^\infty_0 f(t)e^{-st} \mathrm{d}t$$
where $s = \alpha + j\omega$
The function $F(s)$ is often much easier to manipulate than periodic function $f(t)$.
## Final Value Theorem
As $f(t)$ tends to infinity, $sF(s)$ tends to 0.
## Example
$$\dot x_o = ax_o = ax_i$$
where $x_o$ is the output and $x_i$ is the input
Take the Laplace transform:
$$sX_o(s) + aX_o(s) = aX_i(s)$$
Rearrange to get equation for the transfer function:
$$G(s) = \frac{X_o}{X_i} = \frac{a}{s+a}$$
$$ X_o = GX_i $$
If $X_i$ is a unit step, then:
$$X_i = \frac1s$$
and
$$X_o = \frac{a}{s(s+a)}$$
Taking the inverse gives:
$$X_0 = 1 - e^{-at}$$
2023-02-06 17:11:38 +00:00
# Non-Linearity
Sometimes, components of a system will not reduce to a simple linear relationship.
When this is the case superposition and Laplace transforms do not apply/are not valid.
Reasons for this include:
- saturation
![](./images/vimscrot-2023-02-06T16:10:06,638264779+00:00.png)
- backlash
![](./images/vimscrot-2023-02-06T16:10:23,750576923+00:00.png)
- clearance
![](./images/vimscrot-2023-02-06T16:10:39,624151288+00:00.png)
- coulomb friction
![](./images/vimscrot-2023-02-06T16:10:55,163385436+00:00.png)
- material non-linearity
![](./images/vimscrot-2023-02-06T16:11:17,999306580+00:00.png)
- flow through an orifice (choked flow)
![](./images/vimscrot-2023-02-06T16:11:34,160399051+00:00.png)
## Linearisation
System behaviour is approximated to a linear relationship near the "nominal" operating point:
![](./images/vimscrot-2023-02-06T16:13:20,353784072+00:00.png)