Partially write up notes on matrices lecture 1

This commit is contained in:
Akbar Rahman 2021-10-19 20:24:53 +01:00
parent 417a2626ce
commit 0040607bb1
Signed by: alvierahman90
GPG Key ID: 20609519444A1269

View File

@ -390,3 +390,109 @@ $$z^3 = 8i$$
> 4. There are three solutions
</details>
# Matrices (and Simultaneous Equations)
## Gaussian Elimination
Gaussian eliminiation can be used when the number of unknown variables you have is equal to the
number of equations you are given.
I'm pretty sure it's the name for the method you use to solve simultaneous equations in school.
For example if you have 1 equation and 1 unknown:
\begin{align*}
2x &= 6 \\
x &= 3
\end{align*}
### Number of Solutions
Let's generalise the example above to
$$ax = b$$
There are 3 possible cases:
\begin{align*}
a \ne 0 &\rightarrow x = \frac b a \\
a = 0, b \ne 0 &\rightarrow \text{no solution for $x$} \\
a = 0, b = 0 &\rightarrow \text{infinite solutions for $x$}
\end{align*}
### 2x2 System
A 2x2 system is one with 2 equations and 2 unknown variables.
<details>
<summary>
#### Example 1
\begin{align*}
3x_1 + 4x_2 &= 2 &\text{(1)} \\
x_1 + 2x_2 &= 0 &\text{(2)} \\
\end{align*}
</summary>
\begin{align*}
3\times\text{(2)} = 3x_1 + 6x_2 &= 0 &\text{(3)} \\
\text{(3)} - \text{(1)} = 0x_1 + 2x_2 &= -2 \\
x_2 &= -1
\end{align*}
We've essentially created a 1x1 system for $x_2$ and now that's solved we can back substitute it
into equation (1) (or equation (2), it doesn't matter) to work out the value of $x_1$:
\begin{align*}
3x_1 + 4x_2 &= 2 \\
3x_1 - 1 &= 2 \\
3x_1 &= 6 \\
x_1 &= 2
\end{align*}
You can check the values for $x_1$ and $x_2$ are correct by substituting them into equation (2).
</details>
### 3x3 System
A 3x3 system is one with 3 equations and 3 unknown variables.
<details>
<summary>
#### Example 1
\begin{align*}
2x_1 + 3x_2 - x_3 &= 5 &\text{(1)} \\
4x_1 + 4x_2 - 3x_3 &= 5 &\text{(2)} \\
2x_1 - 3x_2 + x_3 &= 5 &\text{(3)} \\
\end{align*}
</summary>
The first step is to eliminate $x_1$ from (2) and (3) using (1):
\begin{align*}
\text{(2)}-2\times\text{(1)} = -2x_2 -x_3 &= -1 &\text{(4)} \\
\text{(3)}-\text{(1)} = -6x_2 + 3x_3 &= -6 &\text{(5)} \\
\end{align*}
This has created a 2x2 system of $x_2$ and $x_3$ which can be solved as any other 2x2 system.
I'm too lazy to type up the working, but it is solved like any other 2x2 system.
\begin{align*}
x_2 &= -2
x_3 &= 5
\end{align*}
These values can be back-substituted into any of the first 3 equations to find out $x_1$:
\begin{align*}
-2x_1 + 3x_2 - x_3 = 2x_1 + 6 - 3 = 5 \rightarrow x_1 = 1
\end{align*}
</details>