Partially write up notes on matrices lecture 1
This commit is contained in:
parent
417a2626ce
commit
0040607bb1
@ -390,3 +390,109 @@ $$z^3 = 8i$$
|
||||
> 4. There are three solutions
|
||||
|
||||
</details>
|
||||
|
||||
# Matrices (and Simultaneous Equations)
|
||||
|
||||
## Gaussian Elimination
|
||||
|
||||
Gaussian eliminiation can be used when the number of unknown variables you have is equal to the
|
||||
number of equations you are given.
|
||||
|
||||
I'm pretty sure it's the name for the method you use to solve simultaneous equations in school.
|
||||
|
||||
For example if you have 1 equation and 1 unknown:
|
||||
|
||||
\begin{align*}
|
||||
2x &= 6 \\
|
||||
x &= 3
|
||||
\end{align*}
|
||||
|
||||
### Number of Solutions
|
||||
|
||||
Let's generalise the example above to
|
||||
|
||||
$$ax = b$$
|
||||
|
||||
There are 3 possible cases:
|
||||
|
||||
\begin{align*}
|
||||
a \ne 0 &\rightarrow x = \frac b a \\
|
||||
a = 0, b \ne 0 &\rightarrow \text{no solution for $x$} \\
|
||||
a = 0, b = 0 &\rightarrow \text{infinite solutions for $x$}
|
||||
\end{align*}
|
||||
|
||||
### 2x2 System
|
||||
|
||||
A 2x2 system is one with 2 equations and 2 unknown variables.
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
\begin{align*}
|
||||
3x_1 + 4x_2 &= 2 &\text{(1)} \\
|
||||
x_1 + 2x_2 &= 0 &\text{(2)} \\
|
||||
\end{align*}
|
||||
|
||||
</summary>
|
||||
|
||||
\begin{align*}
|
||||
3\times\text{(2)} = 3x_1 + 6x_2 &= 0 &\text{(3)} \\
|
||||
\text{(3)} - \text{(1)} = 0x_1 + 2x_2 &= -2 \\
|
||||
x_2 &= -1
|
||||
\end{align*}
|
||||
|
||||
We've essentially created a 1x1 system for $x_2$ and now that's solved we can back substitute it
|
||||
into equation (1) (or equation (2), it doesn't matter) to work out the value of $x_1$:
|
||||
|
||||
\begin{align*}
|
||||
3x_1 + 4x_2 &= 2 \\
|
||||
3x_1 - 1 &= 2 \\
|
||||
3x_1 &= 6 \\
|
||||
x_1 &= 2
|
||||
\end{align*}
|
||||
|
||||
You can check the values for $x_1$ and $x_2$ are correct by substituting them into equation (2).
|
||||
|
||||
</details>
|
||||
|
||||
### 3x3 System
|
||||
|
||||
A 3x3 system is one with 3 equations and 3 unknown variables.
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
\begin{align*}
|
||||
2x_1 + 3x_2 - x_3 &= 5 &\text{(1)} \\
|
||||
4x_1 + 4x_2 - 3x_3 &= 5 &\text{(2)} \\
|
||||
2x_1 - 3x_2 + x_3 &= 5 &\text{(3)} \\
|
||||
\end{align*}
|
||||
|
||||
</summary>
|
||||
|
||||
The first step is to eliminate $x_1$ from (2) and (3) using (1):
|
||||
|
||||
\begin{align*}
|
||||
\text{(2)}-2\times\text{(1)} = -2x_2 -x_3 &= -1 &\text{(4)} \\
|
||||
\text{(3)}-\text{(1)} = -6x_2 + 3x_3 &= -6 &\text{(5)} \\
|
||||
\end{align*}
|
||||
|
||||
This has created a 2x2 system of $x_2$ and $x_3$ which can be solved as any other 2x2 system.
|
||||
I'm too lazy to type up the working, but it is solved like any other 2x2 system.
|
||||
|
||||
\begin{align*}
|
||||
x_2 &= -2
|
||||
x_3 &= 5
|
||||
\end{align*}
|
||||
|
||||
These values can be back-substituted into any of the first 3 equations to find out $x_1$:
|
||||
|
||||
\begin{align*}
|
||||
-2x_1 + 3x_2 - x_3 = 2x_1 + 6 - 3 = 5 \rightarrow x_1 = 1
|
||||
\end{align*}
|
||||
|
||||
</details>
|
||||
|
Loading…
Reference in New Issue
Block a user