finish notes on semester 1 thermodynamics
This commit is contained in:
parent
2a32037e1c
commit
02a98be18e
@ -40,7 +40,7 @@ The system is not in equilibrium if parts of the system are at different conditi
|
|||||||
|
|
||||||
#### Adiabatic
|
#### Adiabatic
|
||||||
|
|
||||||
A process in which does not cross the system boundary
|
A process in which heat does not cross the system boundary
|
||||||
|
|
||||||
## Perfect (Ideal) Gasses
|
## Perfect (Ideal) Gasses
|
||||||
|
|
||||||
@ -204,6 +204,41 @@ Entropy is defined as the following, given that the process s reversible:
|
|||||||
|
|
||||||
$$S_2 - S_1 = \int\! \frac{\mathrm{d}Q}{T}$$
|
$$S_2 - S_1 = \int\! \frac{\mathrm{d}Q}{T}$$
|
||||||
|
|
||||||
|
#### Change of Entropy of a Perfect Gas
|
||||||
|
|
||||||
|
Consider the 1st corollary of the 1st law:
|
||||||
|
|
||||||
|
$$\mathrm dq + \mathrm dw = \mathrm du$$
|
||||||
|
|
||||||
|
and that the process is reversible:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\mathrm ds &= \frac{\mathrm dq} T \bigg|_{rev} \\
|
||||||
|
\mathrm dq = \mathrm ds \times T \\
|
||||||
|
\mathrm dw &= -p\mathrm dv \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
The application of the 1st corollary leads to:
|
||||||
|
|
||||||
|
$$T\mathrm ds - p\mathrm dv = \mathrm du$$
|
||||||
|
|
||||||
|
Derive the change of entropy
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\mathrm ds &= \frac{\mathrm du}{T} + \frac{p \mathrm dv}{T} \\
|
||||||
|
\\
|
||||||
|
\mathrm du &= c_v \mathrm{d}T \\
|
||||||
|
\frac p T &= \frac R v \\
|
||||||
|
\\
|
||||||
|
\mathrm ds &= \frac{c_v\mathrm{d}T}{T} \frac{R\mathrm dv}{v} \\
|
||||||
|
s_2 - s_1 &= c_v\ln\left(\frac{T_2}{T_1}\right) + R\ln\left(\frac{v_2}{v_1}\right)
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
There are two other forms of the equation that can be derived:
|
||||||
|
|
||||||
|
$$s_2 - s_1 = c_v\ln\left(\frac{p_2}{p_1}\right) + c_p\ln\left(\frac{v_2}{v_1}\right)$$
|
||||||
|
$$s_2 - s_1 = c_p\ln\left(\frac{T_2}{T_1}\right) - R\ln\left(\frac{p_2}{p_1}\right)$$
|
||||||
|
|
||||||
### Heat Capacity and Specific Heat Capacity
|
### Heat Capacity and Specific Heat Capacity
|
||||||
|
|
||||||
Heat capacity is quantity of heat required to raise the temperature of a system by a unit
|
Heat capacity is quantity of heat required to raise the temperature of a system by a unit
|
||||||
@ -375,3 +410,125 @@ The 1st Law of Thermodynamics can be thought of as:
|
|||||||
|
|
||||||
> The internal energy of a closed system remains unchanged if it
|
> The internal energy of a closed system remains unchanged if it
|
||||||
> [thermally isolated](#thermally-insulated-and-isolated-systems) from its surroundings
|
> [thermally isolated](#thermally-insulated-and-isolated-systems) from its surroundings
|
||||||
|
|
||||||
|
# Polytropic Processes
|
||||||
|
|
||||||
|
A polytropic process is one which obeys the polytropic law:
|
||||||
|
|
||||||
|
$$pv^n = k \text{ or } p_1v_1^n = p_2v_2^n$$
|
||||||
|
|
||||||
|
where $n$ is a constant called the polytropic index, and $k$ is a constant too.
|
||||||
|
|
||||||
|
A typical polytropic index is between 1 and 1.7.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
#### Example 1
|
||||||
|
|
||||||
|
Derive
|
||||||
|
|
||||||
|
$$\frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\frac{n}{n-1}}$$
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
p_1v_1^n &= p_2v_2^n \\
|
||||||
|
pv &= RT \rightarrow v = R \frac{T}{p} \\
|
||||||
|
\frac{p_2}{p_1} &= \left( \frac{v_1}{v_2} \right)^n \\
|
||||||
|
&= \left(\frac{p_2T_1}{T_2p_1}\right)^n \\
|
||||||
|
&= \left(\frac{p_2}{p_1}\right)^n \left(\frac{T_1}{T_2}\right)^n \\
|
||||||
|
\left(\frac{p_2}{p_1}\right)^{1-n} &= \left(\frac{T_1}{T_2}\right)^n \\
|
||||||
|
\frac{p_2}{p_1} &= \left(\frac{T_1}{T_2}\right)^{\frac{n}{1-n}} \\
|
||||||
|
&= \left(\frac{T_2}{T_1}\right)^{\frac{n}{n-1}} \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
How did you do that last step?
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
For any values of $x$ and $y$
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac x y &= \left(\frac y x \right) ^{-1} \\
|
||||||
|
\left(\frac x y \right)^n &= \left(\frac y x \right)^{-n} \\
|
||||||
|
\left(\frac x y \right)^{\frac{n}{1-n}} &= \left(\frac y x \right)^{\frac{-n}{1-n}} \\
|
||||||
|
&= \left(\frac y x \right)^{\frac{n}{n-1}} \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
</details>
|
||||||
|
</details>
|
||||||
|
|
||||||
|
# Isentropic
|
||||||
|
|
||||||
|
*Isentropic* means constant entropy:
|
||||||
|
|
||||||
|
$$\Delta S = 0 \text{ or } s_1 = s_2 \text{ for a precess 1-2}$$
|
||||||
|
|
||||||
|
A process will be isentropic when:
|
||||||
|
|
||||||
|
$$pv^\gamma = \text{constant}$$
|
||||||
|
|
||||||
|
This is basically the [polytropic law](#polytropic-processes) where the polytropic index, $n$, is
|
||||||
|
always equal to $\gamma$.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
Derivation
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
0 &= s_2 - s_1 = c_v \ln{\left(\frac{p_2}{p_1}\right)} + c_p \ln{\left( \frac{v_2}{v_1} \right)} \\
|
||||||
|
0 &= \ln{\left(\frac{p_2}{p_1}\right)} + \frac{c_p}{c_v} \ln{\left( \frac{v_2}{v_1} \right)} \\
|
||||||
|
&= \ln{\left(\frac{p_2}{p_1}\right)} + \gamma \ln{\left( \frac{v_2}{v_1} \right)} \\
|
||||||
|
&= \ln{\left(\frac{p_2}{p_1}\right)} + \ln{\left( \frac{v_2}{v_1} \right)^\gamma} \\
|
||||||
|
&= \ln{\left[\left(\frac{p_2}{p_1}\right)\left( \frac{v_2}{v_1} \right)^\gamma\right]} \\
|
||||||
|
e^0 = 1 &= \left(\frac{p_2}{p_1}\right)\left( \frac{v_2}{v_1} \right)^\gamma \\
|
||||||
|
&\therefore p_2v_2^\gamma = p_1v_1^\gamma \\
|
||||||
|
\\
|
||||||
|
pv^\gamma = \text{constant}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
During isentropic processes, it is assumed that no heat is transferred into or out of the cylinder.
|
||||||
|
It is also assumed that friction is 0 between the piston and cylinder and that there are no energy
|
||||||
|
losses of any kind.
|
||||||
|
|
||||||
|
This results in a reversible process in which the entropy of the system remains constant.
|
||||||
|
|
||||||
|
An isentropic process is an idealization of an actual process, and serves as the limiting case for
|
||||||
|
real life processes.
|
||||||
|
They are often desired and often the processes on which device efficiencies are calculated.
|
||||||
|
|
||||||
|
## Heat Transfer During Isentropic Processes
|
||||||
|
|
||||||
|
Assume that the compression 1-2 follows a polytropic process with a polytropic index $n$.
|
||||||
|
The work transfer is:
|
||||||
|
|
||||||
|
$$W = - \frac{1}{1-n} (p_2V_2 - p_1V_1) = \frac{mR}{n-1} (T_2-T_1)$$
|
||||||
|
|
||||||
|
Considering the 1st corollary of the 1st law, $Q + W = \Delta U$, and assuming the gas is an ideal
|
||||||
|
gas [we know that](#obey-the-perfect-gas-equation) $\Delta U = mc_v(T_2-T_1)$ we can deduce:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
Q &= \Delta U - W = mc_v(T_2-T_1) - \frac{mR}{n-1} (T_2-T_1) \\
|
||||||
|
&= m \left(c_v - \frac R {n-1}\right)(T_2-T-1)
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Now, if the process was *isentropic* and not *polytropic*, we can simply substitute $n$ for
|
||||||
|
$\gamma$ so now:
|
||||||
|
|
||||||
|
$$Q = m \left(c_v - \frac R {\gamma-1}\right)(T_2-T-1)$$
|
||||||
|
|
||||||
|
But since [we know](#relationship-between-specific-gas-constant-and-specific-heats) $c_v = \frac R {\gamma - 1}$:
|
||||||
|
|
||||||
|
$$Q = m (c_v-c_v)(T_2-T_1) = 0 $$
|
||||||
|
|
||||||
|
This proves that the isentropic version of the process adiabatic (no heat is transferred across the
|
||||||
|
boundary).
|
||||||
|
Loading…
Reference in New Issue
Block a user