diff --git a/uni/mmme/2xxx/2046_dynamics_and_control/control.md b/uni/mmme/2xxx/2046_dynamics_and_control/control.md new file mode 100644 index 0000000..294773c --- /dev/null +++ b/uni/mmme/2xxx/2046_dynamics_and_control/control.md @@ -0,0 +1,50 @@ +--- +author: Akbar Rahman +date: \today +title: MMME2046 // Control +tags: [ mmme2046, uon, uni, control ] +uuid: +--- + +# System and Block Diagrams + +# Laplace Transform + +$$F(s) = \mathscr L {F(t)} = \int^\infty_0 f(t)e^{-st} \mathrm{d}t$$ + +where $s = \alpha + j\omega$ + +The function $F(s)$ is often much easier to manipulate than periodic function $f(t)$. + +## Final Value Theorem + +As $f(t)$ tends to infinity, $sF(s)$ tends to 0. + +## Example + +$$\dot x_o = ax_o = ax_i$$ + +where $x_o$ is the output and $x_i$ is the input + +Take the Laplace transform: + +$$sX_o(s) + aX_o(s) = aX_i(s)$$ + +Rearrange to get equation for the transfer function: + +$$G(s) = \frac{X_o}{X_i} = \frac{a}{s+a}$$ + +$$ X_o = GX_i $$ + +If $X_i$ is a unit step, then: + +$$X_i = \frac1s$$ + +and + +$$X_o = \frac{a}{s(s+a)}$$ + +Taking the inverse gives: + +$$X_0 = 1 - e^{-at}$$ +