mmme2046 lecture 1
@@ -1,783 +0,0 @@
|
||||
---
|
||||
author: Alvie Rahman
|
||||
date: \today
|
||||
title: MMME1026 // Calculus
|
||||
tags:
|
||||
- uni
|
||||
- nottingham
|
||||
- mechanical
|
||||
- engineering
|
||||
- mmme1026
|
||||
- maths
|
||||
- calculus
|
||||
uuid: 126b21f8-e188-48f6-9151-5407f2b2b644
|
||||
---
|
||||
|
||||
# Calculus of One Variable Functions
|
||||
|
||||
## Key Terms
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Function
|
||||
|
||||
A function is a rule that assigns a **unique** value $f(x)$ to each value $x$ in a given *domain*.
|
||||
|
||||
</summary>
|
||||
|
||||
The set of value taken by $f(x)$ when $x$ takes all possible value in the domain is the *range* of
|
||||
$f(x)$.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Rational Functions
|
||||
|
||||
A function of the type
|
||||
|
||||
$$ \frac{f(x)}{g(x)} $$
|
||||
|
||||
</summary>
|
||||
|
||||
where $f$ and $g$ are polynomials, is called a rational function.
|
||||
|
||||
Its range has to exclude all those values of $x$ where $g(x) = 0$.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Inverse Functions
|
||||
|
||||
Consider the function $f(x) = y$.
|
||||
If $f$ is such that for each $y$ in the range there is exactly one $x$ in the domain,
|
||||
we can define the inverse $f^{-1}$ as:
|
||||
|
||||
$$f^{-1}(y) = f^{-1}(f(x)) = x$$
|
||||
|
||||
</summary>
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Limits
|
||||
|
||||
Consider the following:
|
||||
|
||||
$$f(x) = \frac{\sin x}{x}$$
|
||||
|
||||
The value of the function can be easily calculated when $x \neq 0$, but when $x=0$, we get the
|
||||
expression $\frac{\sin 0 }{0}$.
|
||||
However, when we evaluate $f(x)$ for values that approach 0, those values of $f(x)$ approach 1.
|
||||
|
||||
This suggests defining the limit of a function
|
||||
|
||||
$$\lim_{x \rightarrow a} f(x)$$
|
||||
|
||||
to be the limiting value, if it exists, of $f(x)$ as $x$ gets approaches $a$.
|
||||
|
||||
</summary>
|
||||
|
||||
#### Limits from Above and Below
|
||||
|
||||
Sometimes approaching 0 with small positive values of $x$ gives you a different limit from
|
||||
approaching with small negative values of $x$.
|
||||
|
||||
The limit you get from approaching 0 with positive values is known as the limit from above:
|
||||
|
||||
$$\lim_{x \rightarrow a^+} f(x)$$
|
||||
|
||||
and with negative values is known as the limit from below:
|
||||
|
||||
$$\lim_{x \rightarrow a^-} f(x)$$
|
||||
|
||||
If the two limits are equal, we simply refer to the *limit*.
|
||||
|
||||
|
||||
</details>
|
||||
|
||||
## Important Functions
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Exponential Functions
|
||||
|
||||
$$f(x) = e^x = \exp x$$
|
||||
|
||||
</summary>
|
||||
|
||||
It can also be written as an infinite series:
|
||||
|
||||
$$\exp x = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + ...$$
|
||||
|
||||
The two important limits to know are:
|
||||
|
||||
- as $x \rightarrow + \infty$, $\exp x \rightarrow +\infty$ ($e^x \rightarrow +\infty$)
|
||||
- as $x \rightarrow -\infty$, $\exp x \rightarrow 0$ ($e^x \rightarrow 0$)
|
||||
|
||||
Note that $e^x > 0$ for all real values of $x$.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Hyperbolic Functions (sinh and cosh)
|
||||
|
||||
The hyperbolic sine ($\sinh$) and hyperbolic cosine function ($\cosh$) are defined by:
|
||||
|
||||
$$\sinh x = \frac 1 2 (e^x - e^{-x}) \text{ and } \cosh x = \frac 1 2 (e^x + e^{-x})$$
|
||||
$$\tanh = \frac{\sinh x}{\cosh x}$$
|
||||
|
||||
</summary>
|
||||
|
||||
](./images/Sinh_cosh_tanh.svg)
|
||||
|
||||
Some key facts about these functions:
|
||||
|
||||
- $\cosh$ has even symmetry and $\sinh$ and $\tanh$ have odd symmetry
|
||||
- as $x \rightarrow + \infty$, $\cosh x \rightarrow +\infty$ and $\sinh x \rightarrow +\infty$
|
||||
- $\cosh^2x - \sinh^2x = 1$
|
||||
- $\tanh$'s limits are -1 and +1
|
||||
- Derivatives:
|
||||
- $\frac{\mathrm{d}}{\mathrm{d}x} \sinh x = \cosh x$
|
||||
- $\frac{\mathrm{d}}{\mathrm{d}x} \cosh x = \sinh x$
|
||||
- $\frac{\mathrm{d}}{\mathrm{d}x} \tanh x = \frac{1}{\cosh^2x}$
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Natural Logarithm
|
||||
|
||||
$$\ln{e^y} = \ln{\exp y} = y$$
|
||||
|
||||
</summary>
|
||||
|
||||
Since the exponential of any real number is positive, the domain of $\ln$ is $x > 0$.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Implicit Functions
|
||||
|
||||
An implicit function takes the form
|
||||
|
||||
$$f(x, y) = 0$$
|
||||
|
||||
</summary>
|
||||
|
||||
To draw the curve of an implicit function you have to rewrite it in the form $y = f(x)$.
|
||||
There may be more than one $y$ value for each $x$ value.
|
||||
|
||||
</details>
|
||||
|
||||
# Differentiation
|
||||
|
||||
The derivative of the function $f(x)$ is denoted by:
|
||||
|
||||
$$f'(x) \text{ or } \frac{\mathrm{d}}{\mathrm dx} f(x)$$
|
||||
|
||||
Geometrically, the derivative is the gradient of the curve $y = f(x)$.
|
||||
|
||||
It is a measure of the rate of change of $f(x)$ as $x$ varies.
|
||||
|
||||
For example, velocity, $v$, is the rate of change of displacement, $s$, with respect to time, $t$,
|
||||
or:
|
||||
|
||||
$$v = \frac{\mathrm ds}{dt}$$
|
||||
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Formal Definition
|
||||
|
||||
</summary>
|
||||
|
||||

|
||||
|
||||
As $h\rightarrow 0$, the clospe of the cord $\rightarrow$ slope of the tangent, or:
|
||||
|
||||
$$f'(x_0) = \lim_{h\rightarrow0}\frac{f(x_0+h) - f(x_0)}{h}$$
|
||||
|
||||
whenever this limit exists.
|
||||
|
||||
</details>
|
||||
|
||||
## Rules for Differentiation
|
||||
|
||||
### Powers
|
||||
|
||||
$$\frac{\mathrm d}{\mathrm dx} x^n = nx^{-1}$$
|
||||
|
||||
### Trigonometric Functions
|
||||
|
||||
$$\frac{\mathrm d}{\mathrm dx} \sin x = \cos x$$
|
||||
$$\frac{\mathrm d}{\mathrm dx} \cos x = \sin x$$
|
||||
|
||||
### Exponential Functions
|
||||
|
||||
$$\frac{\mathrm d}{\mathrm dx} e^{kx} = ke^{kx}$$
|
||||
|
||||
$$\frac{\mathrm d}{\mathrm dx} \ln kx^n = \frac n x$$
|
||||
|
||||
where $n$ and $k$ are constant.
|
||||
|
||||
### Linearity
|
||||
|
||||
$$\frac{\mathrm d}{\mathrm dx} (f + g) = \frac{\mathrm d}{\mathrm dx} f + \frac{\mathrm d}{\mathrm dx} g$$
|
||||
|
||||
### Product Rule
|
||||
|
||||
$$\frac{\mathrm d}{\mathrm dx} (fg) = \frac{\mathrm df}{\mathrm dx}g + \frac{\mathrm dg}{\mathrm dx}f$$
|
||||
|
||||
### Quotient Rule
|
||||
|
||||
$$ \frac{\mathrm d}{\mathrm dx} \frac f g = \frac 1 {g^2} \left( \frac{\mathrm df}{\mathrm dx} g - f \frac{\mathrm dg}{\mathrm dx} \right) $$
|
||||
|
||||
$$ \left( \frac f g \right)' = \frac 1 {g^2} (gf' - fg')$$
|
||||
|
||||
### Chain Rule
|
||||
|
||||
Let
|
||||
|
||||
$$f(x) = F(u(x))$$
|
||||
|
||||
$$ \frac{\mathrm df}{\mathrm dx} = \frac{\mathrm{d}F}{\mathrm du} \frac{\mathrm du}{\mathrm dx} $$
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
Differentiate $f(x) = \cos{x^2}$.
|
||||
|
||||
</summary>
|
||||
|
||||
Let $u(x) = x^2$, $F(u) = \cos u$
|
||||
|
||||
$$ \frac{\mathrm df}{\mathrm dx} = -\sin u \cdot 2x = 2x\sin{x^2} $$
|
||||
|
||||
</details>
|
||||
|
||||
## L'Hôpital's Rule
|
||||
|
||||
l'Hôpital's rule provides a systematic way of dealing with limits of functions like
|
||||
$\frac{\sin x} x$.
|
||||
|
||||
Suppose
|
||||
|
||||
$$\lim_{x\rightarrow{a}} f(x) = 0$$
|
||||
|
||||
and
|
||||
|
||||
$$\lim_{x\rightarrow{a}} g(x) = 0$$
|
||||
|
||||
and we want $\lim_{x\rightarrow{a}} \frac{f(x)}{g(x)}$.
|
||||
|
||||
If
|
||||
|
||||
$$\lim_{x\rightarrow{a}} \frac{f'(x)}{g'(x)} = L $$
|
||||
|
||||
where any $L$ is any real number or $\pm \infty$, then
|
||||
|
||||
$$\lim_{x\rightarrow{a}} \frac{f(x)}{g(x)} = L$$
|
||||
|
||||
You can keep applying the rule until you get a sensible answer.
|
||||
|
||||
# Graphs
|
||||
|
||||
## Stationary Points
|
||||
|
||||
An important application of calculus is to find where a function is a maximum or minimum.
|
||||
|
||||

|
||||
|
||||
when these occur the gradient of the tangent to the curve, $f'(x) = 0$.
|
||||
The condition $f'(x) = 0$ alone however does not guarantee a minimum or maximum.
|
||||
It only means that point is a *stationary point*.
|
||||
|
||||
There are three main types of stationary points:
|
||||
|
||||
- maximum
|
||||
- minimum
|
||||
- point of inflection
|
||||
|
||||
### Local Maximum
|
||||
|
||||
The point $x = a$ is a local maximum if:
|
||||
|
||||
$$f'(a) = 0 \text{ and } f''(a) < 0$$
|
||||
|
||||
This is because $f'(x)$ is a decreasing function of $x$ near $x=a$.
|
||||
|
||||
### Local Minimum
|
||||
|
||||
The point $x = a$ is a local minimum if:
|
||||
|
||||
$$f'(a) = 0 \text{ and } f''(a) > 0$$
|
||||
|
||||
This is because $f'(x)$ is a increasing function of $x$ near $x=a$.
|
||||
|
||||
### Point of Inflection
|
||||
|
||||
$$f'(a) = 0 \text{ and } f''(a) = 0 \text { and } f'''(a) \ne 0$$
|
||||
|
||||
#### $f'''(a) > 0$
|
||||
|
||||

|
||||
|
||||
#### $f'''(a) < 0$
|
||||
|
||||

|
||||
|
||||
# Approximating with the Taylor series
|
||||
|
||||
The expansion
|
||||
|
||||
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
|
||||
|
||||
is an example of a *Taylor series*.
|
||||
These enable us to approximate a given function f(x) using a series which is often easier to
|
||||
calculate.
|
||||
Among other uses, they help us:
|
||||
|
||||
- calculate complicated function using simple arithmetic operations
|
||||
- find useful analytical approximations which work for $x$ near a given value
|
||||
(e.g. $e^x \approx 1 + x$ for $x$ near 0)
|
||||
- Understand the behaviour of a function near a stationary point
|
||||
|
||||
## Strategy
|
||||
|
||||
Suppose we know information about $f(x)$ only at the point $x=0$.
|
||||
How can we find out about $f$ for other values of $x$?
|
||||
|
||||
We could approximate the function by successive polynomials,
|
||||
each time matching more derivatives at $x=0$.
|
||||
|
||||
\begin{align*}
|
||||
g(x) = a_0 &\text{ using } f(0) \\
|
||||
g(x) = a_0 + a_1x &\text{ using } f(0), f'(0) \\
|
||||
g(x) = a_0 + a_1x + a_2x^2 &\text{ using } f(0), f'(0), f''(0) \\
|
||||
&\text{and so on...}
|
||||
\end{align*}
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
For $x$ near 0, approximate $f(x) = \cos x$ by a quadratic.
|
||||
|
||||
</summary>
|
||||
|
||||
1. Set $f(0) = g(0$:
|
||||
|
||||
$$f(0) = 1 \rightarrow g(0) = a_0 = 1$$
|
||||
|
||||
2. Set $f'(0) = g'(0$:
|
||||
|
||||
$$f'(0) = -\sin0 = 0 \rightarrow g'(0) = a_1 = 0$$
|
||||
|
||||
3. Set $f''(0) = g''(0$:
|
||||
|
||||
$$f''(0) = -\cos = -1 \rightarrow g''(0) = 2a_2 = -1 \rightarrow a_2 = -0.5$$
|
||||
|
||||
So for $x$ near 0,
|
||||
|
||||
$$\cos x \approx 1 - \frac 1 2 x^2$$
|
||||
|
||||
Check:
|
||||
|
||||
$x$ | $\cos x$ | $1 - 0.5x^2$
|
||||
--- | -------- | ------------
|
||||
0.4 | 0.921061 | 0.920
|
||||
0.2 | 0.960066 | 0.980
|
||||
0.1 | 0.995004 | 0.995
|
||||
|
||||
</details>
|
||||
|
||||
## General Case
|
||||
|
||||
### Maclaurin Series
|
||||
|
||||
A Maclaurin series is a Taylor series expansion of a function about 0.
|
||||
|
||||
Any function $f(x)$ can be written as an infinite *Maclaurin Series*
|
||||
|
||||
$$f(x) = a_0 + a_1x + a_2x^2 + a_3x^2 + \cdots$$
|
||||
|
||||
where
|
||||
|
||||
$$a_0 = f(0) \qquad a_n = \frac 1 {n!} \frac{\mathrm d^nf}{\mathrm dx^n} \bigg|_{x=0}$$
|
||||
|
||||
($|_{x=0}$ means evaluated at $x=0$)
|
||||
|
||||
### Taylor Series
|
||||
|
||||
We may alternatively expand about any point $x=a$ to give a Taylor series:
|
||||
|
||||
\begin{align*}
|
||||
f(x) = &f(a) + (x-a)f'(a) \\
|
||||
& + \frac 1 {2!}(x-a)^2f''(a) \\
|
||||
& + \frac 1 {3!}(x-a)^3f'''(a) \\
|
||||
& + \cdots + \frac 1 {n!}(x-a)^nf^{(n)}(a)
|
||||
\end{align*}
|
||||
|
||||
a generalisation of a Maclaurin series.
|
||||
|
||||
An alternative form of Taylor series is given by setting $x = a+h$ where $h$ is small:
|
||||
|
||||
$$f(a+h) = f(a) + hf'(a) + \cdots + \frac 1 {n!}h^nf^{(n)}(a) + \cdots$$
|
||||
|
||||
|
||||
## Taylor Series at a Stationary Point
|
||||
|
||||
If f(x) has a stationary point at $x=a$, then $f'(a) = 0$ and the Taylor series begins
|
||||
|
||||
$$f(x) = f(a) + \frac 1 2 f''(a)(x-a)^2 + \cdots$$
|
||||
|
||||
- If $f''(a) > 0$ then the quadratic part makes the function increase going away from $x=a$ and we
|
||||
have a minimum
|
||||
- If $f''(a) < 0$ then the quadratic part makes the function decrease going away from $x=a$ and we
|
||||
have a maximum
|
||||
- If $f''(a) = 0$ then we must include a higer order terms to determine what happens
|
||||
have a minimum
|
||||
|
||||
# Integration
|
||||
|
||||
Integration is the reverse of [differentiation](#differentiation).
|
||||
|
||||
Take velocity and displacement as an example:
|
||||
|
||||
$$\int\! v \mathrm dt = s + c$$
|
||||
|
||||
where $c$ is the constant of integration, which is required for
|
||||
[indefinite integrals](#indefinite-integrals).A
|
||||
|
||||
## Definite Integrals
|
||||
|
||||
The definite integral of a function $f(x)$ in the range $a \le x \le b$ is denoted be:
|
||||
|
||||
$$\int^b_a \! f(x) \,\mathrm dx$$
|
||||
|
||||
If $f(x) = F'(x)$ ($f(x)$ is the derivative of $F(x)$) then
|
||||
|
||||
$$\int^b_a \! f(x) \,\mathrm dx = \left[F(x)\right]^b_a = F(b) - F(a)$$
|
||||
|
||||
## Area and Integration
|
||||
|
||||
Approximate the area under a smooth curve using a large number of narrow rectangles.
|
||||
|
||||

|
||||
|
||||
Area under curve $\approx \sum_{n} f(x_n)\Delta x_n$.
|
||||
|
||||
As the rectangles get more numerous and narrow, the approximation approaches the real area.
|
||||
|
||||
The limiting value is denoted
|
||||
|
||||
$$\approx \sum_{n} f(x_n)\Delta x_n \rightarrow \int^b_a\! f(x) \mathrm dx$$
|
||||
|
||||
This explains the notation used for integrals.
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
Calculate the area between these two curves:
|
||||
|
||||
\begin{align*}
|
||||
y &= f_1(x) = 2 - x^2 \\
|
||||
y &= f_2(x) = x
|
||||
\end{align*}
|
||||
|
||||
</summary>
|
||||
|
||||

|
||||
|
||||
1. Find the crossing points $P$ and $Q$
|
||||
|
||||
\begin{align*}
|
||||
f_1(x) &= f_2(x) \\
|
||||
x &= 2-x^2 \\
|
||||
x &= 1 \\
|
||||
x &= -2
|
||||
\end{align*}
|
||||
|
||||
2. Since $f_1(x) \ge f_2(x)$ between $P$ and $Q$
|
||||
|
||||
\begin{align*}
|
||||
A &= \int^1_{-2}\! (f_1(x) - f_2(x)) \mathrm dx \\
|
||||
&= \int^1_{-2}\! (2 - x^2 - x) \mathrm dx \\
|
||||
&= \left[ 2x - \frac 13 x^3 - \frac 12 x^2 \right]^1_{-2} \\
|
||||
&= \left(2 - \frac 13 - \frac 12 \right) - \left( -4 + \frac 83 - \frac 42 \right) \\
|
||||
&= \frac 92
|
||||
\end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
## Techniques for Integration
|
||||
|
||||
Integration requires multiple techniques and methods to do correctly because it is a PITA.
|
||||
|
||||
These are best explained by examples so try to follow those rather than expect and explanation.
|
||||
|
||||
### Integration by Substitution
|
||||
|
||||
Integration but substitution lets us integrate functions of functions.
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
Find
|
||||
|
||||
$$I = \int\!(5x - 1)^3 \mathrm dx$$
|
||||
|
||||
</summary>
|
||||
|
||||
1. Let $w(x) = 5x - 1$
|
||||
2.
|
||||
\begin{align*}
|
||||
\frac{\mathrm d}{\mathrm dx} w &= 5 \\
|
||||
\frac 15 \mathrm dw &= \mathrm dx
|
||||
\end{align*}
|
||||
|
||||
3. The integral is then
|
||||
|
||||
\begin{align*}
|
||||
I &= \int\! w^3 \frac 15 \mathrm dw \\
|
||||
&= \frac 15 \cdot \frac 14 \cdot w^4 + c \\
|
||||
&= \frac{1}{20}w^4 + c
|
||||
\end{align*}
|
||||
|
||||
4. Finally substitute $w$ out
|
||||
|
||||
$$I = \frac{(5x-1)^4}{20} + c$$
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 2
|
||||
|
||||
Find
|
||||
|
||||
$$I = \int\! \cos x \sqrt{\sin x + 1} \mathrm dx$$
|
||||
|
||||
</summary>
|
||||
|
||||
1. Let
|
||||
|
||||
$$w(x) = \sin x + 1$$
|
||||
|
||||
2. Then
|
||||
|
||||
\begin{align*}
|
||||
\frac{\mathrm d}{\mathrm dx} w = \cos x \\
|
||||
\mathrm dw = \cos x \mathrm dx \\
|
||||
\end{align*}
|
||||
|
||||
3. The integral is now
|
||||
|
||||
\begin{align*}
|
||||
I &= \int\! \sqrt w \,\mathrm dw \\
|
||||
&= \int\! w^{\frac12} \,\mathrm dw \\
|
||||
&= \frac23w^{\frac32} + c
|
||||
\end{align*}
|
||||
|
||||
4. Finally substitute $w$ out to get:
|
||||
|
||||
$$I = \frac23 (\sin x + 1)^{\frac32} + c$$
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 3
|
||||
|
||||
Find
|
||||
|
||||
$$I = \int^{\frac\pi2}_0\! \cos x \sqrt{\sin x + 1} \,\mathrm dx$$
|
||||
|
||||
</summary>
|
||||
|
||||
1. Use the previous example to get to
|
||||
|
||||
$$I = \int^2_1\! \sqrt w \,\mathrm dw = \frac23w^{\frac32} + c$$
|
||||
|
||||
2. Since $w(x) = \sin x + 1$ the limits are:
|
||||
|
||||
\begin{align*}
|
||||
x = 0 &\rightarrow w = 1\\
|
||||
x = \frac\pi2 &\rightarrow w = 2
|
||||
\end{align*}
|
||||
|
||||
3. This gives us
|
||||
|
||||
$$I = \left[ \frac23w^{\frac32} \right]^2_1 = \frac23 (2^{\frac23} = 1)$$
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 4
|
||||
|
||||
Find
|
||||
|
||||
$$I = \int^1_0\! \sqrt{1 - x^2} \,\mathrm dx$$
|
||||
|
||||
</summary>
|
||||
|
||||
1. Try a trigonmetrical substitution:
|
||||
|
||||
\begin{align*}
|
||||
x &= \sin w \\
|
||||
\\
|
||||
\frac{\mathrm dx}{\mathrm dw} = \cos w \\
|
||||
\mathrm dx = \cos 2 \,\mathrm dw \\
|
||||
\end{align*}
|
||||
|
||||
2.
|
||||
|
||||
\begin{align*}
|
||||
x=0 &\rightarrow w=0 \\
|
||||
x=1 &\rightarrow w=\frac\pi2
|
||||
\end{align*}
|
||||
|
||||
3. Therefore
|
||||
|
||||
\begin{align*}
|
||||
I &= \int^{\frac\pi2}_0\! \sqrt{1 - \sin^2 w} \cos w \,\mathrm dw \\
|
||||
&= \int^{\frac\pi2}_0\! \cos^w w \,\mathrm dw
|
||||
\end{align*}
|
||||
|
||||
But $\cos(2w) = 2\cos^2w - 1$ so:
|
||||
|
||||
$$\cos^2w = \frac12 \cos(2w) + \frac12$$
|
||||
|
||||
|
||||
Hence
|
||||
|
||||
\begin{align*}
|
||||
I &= \int^{\frac\pi2}_0\! \frac12 \cos(2w) + \frac12 \,\mathrm dw \\
|
||||
&= \left[ \frac14 \sin(2w) + \frac w2 \right]^{\frac\pi2}_0 \\
|
||||
&= \left( \frac14 \sin\pi + \frac\pi4 \right) - 0 \\
|
||||
&= \frac\pi4
|
||||
\end{align*}
|
||||
|
||||
### Integration by Parts
|
||||
|
||||
$$uv = \int\! u\frac{\mathrm dv}{\mathrm dx} \,\mathrm dx + \int\! \frac{\mathrm du}{\mathrm dx}v \,\mathrm dx$$
|
||||
|
||||
or
|
||||
|
||||
$$\int\! u\frac{\mathrm dv}{\mathrm dx} \,\mathrm dx = uv - \int\! \frac{\mathrm du}{\mathrm dx}v \,\mathrm dx$$
|
||||
|
||||
This technique is derived from integrating the product rule.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
Find
|
||||
|
||||
$$I = \int\! \ln x \,\mathrm dx$$
|
||||
|
||||
</summary>
|
||||
|
||||
1. Use
|
||||
|
||||
$$\int\! u\frac{\mathrm dv}{\mathrm dx} \,\mathrm dx = uv - \int\! \frac{\mathrm du}{\mathrm dx}v \,\mathrm dx$$
|
||||
|
||||
2. Set $u = \ln x$
|
||||
and $v' = 1$.
|
||||
|
||||
3. This means that $u' = \frac1x$ and $v = x$.
|
||||
4.
|
||||
|
||||
\begin{align*}
|
||||
I &= x\ln x - \int\! x\cdot\frac1x \,\mathrm dx + c \\
|
||||
&= x\ln x - \int\! \,\mathrm dx + c \\
|
||||
&= x\ln x - x + c \\
|
||||
\end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
# Application of Integration
|
||||
|
||||
## Differential Equations
|
||||
|
||||
Consider the equation
|
||||
|
||||
$$\frac{\mathrm dy}{\mathrm dx} = y^2$$
|
||||
|
||||
To find $y$, is not a straightforward integration:
|
||||
|
||||
$$y = \int\!y^2 \,\mathrm dx$$
|
||||
|
||||
The equation above does not solve for $y$ as we can't integrate the right until we know $y$...
|
||||
which is what we're trying to find.
|
||||
|
||||
This is an example of a first order differential equation.
|
||||
The general form is:
|
||||
|
||||
$$\frac{\mathrm dy}{\mathrm dx} = F(x, y)$$
|
||||
|
||||
### Separable Differential Equations
|
||||
|
||||
A first order diferential equation is called *separable* if it is of the form
|
||||
|
||||
$$\frac{\mathrm dy}{\mathrm dx} = f(x)g(y)$$
|
||||
|
||||
We can solve these by rearranging:
|
||||
|
||||
$$\frac1{g(y} \cdot \frac{\mathrm dy}{\mathrm dx} = f(x)$$
|
||||
|
||||
$$\int\! \frac1{g(y)} \,\mathrm dy = \int\! f(x) \,\mathrm dx + c$$
|
||||
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
Find $y$ such that
|
||||
|
||||
$$\frac{\mathrm dy}{\mathrm dx} = ky$$
|
||||
|
||||
where $k$ is a constant.
|
||||
|
||||
</summary>
|
||||
|
||||
Rearrange to get
|
||||
|
||||
\begin{align*}
|
||||
\int\! \frac1y \,\mathrm dy &= \int\! k \mathrm dx + c \\
|
||||
\ln y &= kx + c \\
|
||||
y &= e^{kx + c} = e^ce^{kx} \\
|
||||
&= Ae^{kx}
|
||||
\end{align*}
|
||||
|
||||
where $A = e^c$ is an arbitrary constant.
|
||||
|
||||
</details>
|
||||
@@ -1,398 +0,0 @@
|
||||
---
|
||||
author: Alvie Rahman
|
||||
date: \today
|
||||
title: MMME1026 // Complex Numbers
|
||||
tags:
|
||||
- uni
|
||||
- nottingham
|
||||
- mechanical
|
||||
- engineering
|
||||
- mmme1026
|
||||
- maths
|
||||
- complex_numbers
|
||||
uuid: b9be8780-1ab7-402f-9c67-8cc74a74f7a9
|
||||
---
|
||||
|
||||
# Complex Numbers
|
||||
|
||||
## What is a Complex Number?
|
||||
|
||||
- $i$ is the unit imaginary number, which is defined by:
|
||||
|
||||
$$ i^2 = -1 $$
|
||||
|
||||
- An arbritary complex number is written in the form
|
||||
|
||||
$$z = x + iy$$
|
||||
|
||||
Where:
|
||||
|
||||
- $x$ is the real part of $z$ (which you may seen written as $\Re(z) = x$ or Re$(z) = x$)
|
||||
- $y$ is the imaginary part of $z$ (which you may seen written as $\Im(z) = y$ or Im$(z) = y$)
|
||||
|
||||
- Two complex numbers are equal if both their real and imaginary parts are equal
|
||||
|
||||
e.g. $$(3 + 4i) + (1 -2i) = (3+1) + i(4-2) = 2 + 2i$$
|
||||
|
||||
### The Complex Conjugate
|
||||
|
||||
Given complex number $z$:
|
||||
|
||||
$$z = x + iy$$
|
||||
|
||||
The complex conjugate of z, $\bar z$ is:
|
||||
|
||||
$$\bar{z} = x -iy$$
|
||||
|
||||
### Division of Complex Numbers
|
||||
|
||||
- Multiply numerator and denominator by the conjugate of the denominator
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example
|
||||
|
||||
</summary>
|
||||
|
||||
> \begin{align*}
|
||||
z_1 &= 5 + i \\
|
||||
z_2 &= 1 -i \\
|
||||
\\
|
||||
\frac{z_1}{z_2} &= \frac{5+i}{1-i} \cdot \frac{\bar{z_2}}{\bar{z_2}} = \frac{(5+i)(1+i)}{(1-i)(1+i)} \\
|
||||
&= \frac{5 + i + 5i -1}{1 + 1} \\
|
||||
&= \frac{4 + 6i}{2} = 2 + 3i
|
||||
> \end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
### Algebra and Conjugation
|
||||
|
||||
When taking complex conjugate of an algebraic expresion, we can replace $i$ by $-i$ before or after
|
||||
doing the algebraic operations:
|
||||
|
||||
\begin{align*}
|
||||
\overline{z_1+z_2} &= \bar{z_1}+\bar{z_2} \\
|
||||
\overline{z_1z_2} &= \bar{z_1}\bar{z_2} \\
|
||||
\overline{z_1/z_2} &= \frac{\bar{z_1}}{\bar{z_2}}
|
||||
\end{align*}
|
||||
|
||||
The conjugate of a real number is the same as that number.
|
||||
|
||||
#### Application
|
||||
|
||||
If $z$ is a root of the polynomial equation
|
||||
|
||||
$$0 = az^2 + bz + c$$
|
||||
|
||||
with **real** coefficients $a$, $b$, and $c$, then $\bar{z}$ is also a root because
|
||||
|
||||
\begin{align*}
|
||||
0 &= \overline{az^2 + bz + c} \\
|
||||
&= \bar{a}\bar{z}^2 + \bar{b}\bar{z} + \bar{c} \\
|
||||
&= a\bar{z}^2 + b\bar{z} + c
|
||||
\end{align*}
|
||||
|
||||
### The Argand Diagram
|
||||
|
||||
A general complex number $z = x + iy$ has two components so it can can be represented as a point in
|
||||
the plane with Cartesion coordinates $(x, y)$.
|
||||
|
||||
\begin{align*}
|
||||
4-2i &\leftrightarrow (4, -2) \\
|
||||
-i &\leftrightarrow (0, -1) \\
|
||||
z &\leftrightarrow (x, y) \\
|
||||
\bar z &\leftrightarrow (x, -y)
|
||||
\end{align*}
|
||||
|
||||
### Plotting on a Polar Graph
|
||||
|
||||
We can also describe points in the complex plain with polar coordinates $(r, \theta)$:
|
||||
|
||||
\begin{align*}
|
||||
z &= r(\cos\theta + i\sin\theta) &\text{ polar form of $z$} \\
|
||||
r &= \sqrt{x^2+y^2} &\text{(modulus)}\\
|
||||
\theta &= \arg z,\text{ where} \tan \theta = \frac y x &\text{(argument)} \\
|
||||
x &= r\cos \theta \\
|
||||
y &= r\sin \theta
|
||||
\end{align*}
|
||||
|
||||
Be careful when turning $(x, y)$ into $(r, \theta)$ form as $\tan^{-1} \frac y x = \theta$ does not
|
||||
always hold true as there are many solutions.
|
||||
|
||||
#### Choosing $\theta$ Correctly
|
||||
|
||||
1. Determine which quadrant the point is in (draw a picture).
|
||||
2. Find a value of $\theta$ such that $\tan \theta = \frac y x$ and check that it is consistent.
|
||||
If it puts you in the wrong quadrant, add or subtract $\pi$.
|
||||
|
||||
## Exponential Functions
|
||||
|
||||
- The exponential function $f(x) = \exp x$ may be wirtten as an infinite series:
|
||||
|
||||
$$\exp x = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots $$
|
||||
|
||||
- The function $f(x) = e^{-x}$ is just $\frac 1 {e^x}$
|
||||
- Note the important properties:
|
||||
|
||||
\begin{align*}
|
||||
e^{a+b} &= e^a e^b \\
|
||||
(e^a)^b &= e^{ab}
|
||||
\end{align*}
|
||||
|
||||
## Euler's Formula
|
||||
|
||||
$$e^{i\theta} = \cos\theta + i\sin\theta$$
|
||||
|
||||
- Properties of $e^{i\theta}$: For any real angle $\theta$ we have
|
||||
|
||||
$$|e^{i\theta}| = |\cos\theta + i\sin\theta| = \sqrt{\cos^2\theta + \sin^2\theta} = 1$$
|
||||
|
||||
and
|
||||
|
||||
$$ \arg {e^{i\theta}} = \theta $$
|
||||
|
||||
- A complex number in *polar form*, where $r = |z|$, and $\theta = \arg z$, may alternatively be
|
||||
written in its *exponential form*:
|
||||
|
||||
$$z = re^{i\theta}$$
|
||||
|
||||
**Note**: $$\bar z = r\cos\theta - ir\sin\theta = re^{-i\theta}$$
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example 1
|
||||
|
||||
Write $z = -1 + i$ in exponential form
|
||||
|
||||
</summary>
|
||||
|
||||
> $\arg z = \frac {3\pi} 4$
|
||||
> $|z| = \sqrt 2$
|
||||
>
|
||||
> So $z = \sqrt2e^{i\frac{3\pi} 4}$
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example 2
|
||||
|
||||
The equations for a mechanical vibration problem are found to have the following mathematical
|
||||
solution:
|
||||
|
||||
$$z(t) = \frac{e^{i\omega t}}{\omega_0^2-\omega^2 + i\gamma}$$
|
||||
|
||||
</summary>
|
||||
|
||||
where $t$ represents time and $\omega$, $\omega_0$ and $\gamma$ are all positive real physical
|
||||
constants.
|
||||
Although $z(t)$
|
||||
is complex and cannot directly represent a physical solution, it turns out that the real and
|
||||
imaginary parts $x(t)$ and $y(t)$ in $z(t) = x(t) + iy(t)$ can. Polar notation can be used to extract
|
||||
this physical information efficiently as follows:
|
||||
|
||||
a. Put the denominator in the form
|
||||
|
||||
$$ae^{i\delta}$$
|
||||
|
||||
where you should give explicit expressions for $a$ and $\delta$ in terms of $\gamma$, $\gamma_0$,
|
||||
and $\gamma$.
|
||||
|
||||
|
||||
> \begin{align*}
|
||||
a &= \sqrt{\gamma^2 + (\omega_0^2 - \omega^2)^2} \\
|
||||
\delta &= \tan^{-1}\frac \delta {\omega_0^2 - \omega^2}
|
||||
> \end{align*}
|
||||
|
||||
b. Hence find the constants $b$ and $\varphi$ such that
|
||||
|
||||
$$x(t) = b\cos(\omega t + \varphi)$$
|
||||
|
||||
and write a similar expression for $y(t)$.
|
||||
|
||||
> \begin{align*}
|
||||
z &= \frac{e^i\omega t}{ae^{i\delta}} = \frac 1 a e^{i (\omega t - \delta)} \\
|
||||
x + iy &= \frac 1 a \cos(\omega t - \delta) + \frac 1 a \sin(\omega t - \delta) \\
|
||||
\therefore \Re z &= x = \frac 1 a \cos(\omega t - \delta), \\
|
||||
\Im z &= y = \frac 1 a \sin(\omega t - \delta) \\
|
||||
\\
|
||||
b &= \frac 1 a = \frac 1 {\sqrt{\gamma^2 + (\omega_0^2 - \omega^2)^2}} \\
|
||||
\varphi &= -\delta = \tan^{-1}\frac \delta {\omega_0^2 - \omega^2}\\
|
||||
\\
|
||||
y(t) &= \frac 1 a \sin(\omega t - \delta) \\
|
||||
> \end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
## Products of Complex Numbers
|
||||
|
||||
Suppose we have 2 complex numbers:
|
||||
|
||||
$$z_1 = x_1 + iy_1 = r_1e^{i\theta_1}$$
|
||||
$$z_2 = x_2 + iy_2 = r_2e^{i\theta_2}$$
|
||||
|
||||
Using $e^a e^b = e^{a+b}$, the product is:
|
||||
|
||||
\begin{align*}
|
||||
z_3 = z_1 z_2 &= (r_1e^{i\theta_1})(r_2e^{i\theta_2}) \\
|
||||
&= r_1r_2e^{i\theta_1}e^{i\theta_2} \\
|
||||
&= r_1r_2e^{i(\theta_1+\theta_2)} \\
|
||||
\\
|
||||
|z_1z_2| &= |z_1|\times|z_2| \\
|
||||
\arg z_1z_2 &= \arg z_1 \times \arg z_2
|
||||
\end{align*}
|
||||
|
||||
## de Moivre's Theorem
|
||||
|
||||
Let $z = re^{i\theta}$. Consider $z^n$.
|
||||
|
||||
Since $z = r(\cos\theta + i\sin\theta)$,
|
||||
\begin{align*}
|
||||
z^n &= r^n(\cos\theta + i\sin\theta)^n &\text{(1)} \\
|
||||
\end{align*}
|
||||
|
||||
But also
|
||||
|
||||
\begin{align*}
|
||||
z^n &= (re^{i\theta})^n \\
|
||||
&= r^n(e^{i\theta})^n \\
|
||||
&= r^ne^{in\theta} \\
|
||||
&= r^n(\cos{n\theta} + i\sin{n\theta}) &\text{(2)} \\
|
||||
\end{align*}
|
||||
|
||||
By equating (1) and (2), we find de Moivre's theorem:
|
||||
|
||||
\begin{align*}
|
||||
r^n(\cos\theta +i\sin\theta)^n &= r^n(\cos{n\theta} + i\sin{n\theta}) \\
|
||||
(\cos\theta +i\sin\theta)^n &= (\cos{n\theta} + i\sin{n\theta})
|
||||
\end{align*}
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example 1
|
||||
|
||||
Write $1+i$ in polar form and use de Moivre's theorem to calculate $(1+i)^{15}$.
|
||||
|
||||
</summary>
|
||||
|
||||
> \begin{align*}
|
||||
r &= |1+i| = \sqrt2 \\
|
||||
\theta &= \arg{1+i} = \frac \pi 4 \\
|
||||
\\
|
||||
\text{So } 1 + i &= \sqrt2(\cos{\frac pi 4} + i\sin{\frac \pi 4}) = \sqrt2e^{i\frac \pi 4} \text{ and}\\
|
||||
(i+i)^{15} &= (\sqrt2)^{15}\left(\cos{\frac \pi 4} + i\sin{\frac \pi 4}\right)^{15} \\
|
||||
&= 2^{\frac 15 2} \left(\cos{\frac{15\pi} 4} + i\sin{\frac{15\pi} 4}\right) \\
|
||||
&= 2^{\frac 15 2} \left(\frac 1 {\sqrt2} - \frac i {\sqrt2}\right) \\
|
||||
&= 2^7 (1 - i) \\
|
||||
&= 128 - 128i
|
||||
> \end{align*}
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example 2
|
||||
|
||||
Use de Moivre's theorem to show that
|
||||
|
||||
\begin{align*}
|
||||
\cos{2\theta} &= \cos^2\theta-\sin^2\theta \\
|
||||
\text{and} \\
|
||||
\sin{2\theta} &= 2\sin\theta\cos\theta
|
||||
\end{align*}
|
||||
|
||||
</summary>
|
||||
|
||||
> Let $n=2$:
|
||||
|
||||
> \begin{align*}
|
||||
(\cos\theta+i\sin\theta)^2 &= \cos^2\theta + 2i\sin\theta\cos\theta - \sin^2\theta \\
|
||||
\text{Real part: } \cos^2\theta - \sin^2\theta &= \cos{2\theta}\\
|
||||
\text{Imaginary part: } 2\sin\theta\cos\theta &= \sin{2\theta}
|
||||
> \end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example 3
|
||||
|
||||
Given that $n \in \mathbb{N}$ and $\omega = -1 + i$, show that
|
||||
$w^n + \bar{w}^n = 2^{\frac n 2 + 1}\cos{\frac{3n\pi} 4}$ with Euler's formula.
|
||||
|
||||
</summary>
|
||||
|
||||
> \begin{align*}
|
||||
r &= \sqrt{2} \\
|
||||
\arg \omega = \theta &= \frac 3 4 \pi \\
|
||||
\\
|
||||
\omega^n &= r^n(cos{n\theta} + i\sin{n\theta}) \\
|
||||
\bar\omega^n &= r^n(cos{n\theta} - i\sin{n\theta}) \\
|
||||
\omega^n + \bar\omega^n &= r^n(2\cos{n\theta}) \\
|
||||
&= 2^{\frac n 2 + 1}\cos{\frac {3n\pi} 4}
|
||||
> \end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
## Complex Roots of Polynomials
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example
|
||||
|
||||
Find which complex numbers $z$ satisfy
|
||||
|
||||
$$z^3 = 8i$$
|
||||
|
||||
</summary>
|
||||
|
||||
> 1. Write $8i$ in exponential form,
|
||||
>
|
||||
> $|8i| = 8$ and $\arg{8i} = \frac \pi 2$
|
||||
>
|
||||
> $\therefore 8i = 8e^{i\frac \pi 2}$
|
||||
>
|
||||
>
|
||||
> 2. Let the solution be $r = re^{i\theta}$.
|
||||
>
|
||||
> Then $z^3 = r^3e^{3i\theta}$.
|
||||
>
|
||||
> 3. $z^3 = r^3e^{3i\theta} = 8e^{i\frac \pi 2}$
|
||||
>
|
||||
> i. Compare modulus:
|
||||
>
|
||||
> $r^3 = 8 \rightarrow r = 2$
|
||||
>
|
||||
> ii. Compare argument:
|
||||
>
|
||||
> $$3\theta = \frac \pi 2$$
|
||||
>
|
||||
> is a solution but there are others since
|
||||
>
|
||||
> $$e^{i\frac \pi 2} = e^{i \frac \pi 2 + 2n\pi}$$
|
||||
>
|
||||
> so we get a solution whenever
|
||||
>
|
||||
> $$3\theta = \frac \pi 2 + 2n\pi$$
|
||||
>
|
||||
> for any integer `n`
|
||||
>
|
||||
> - $n = 0 \rightarrow z = \sqrt3 + i$
|
||||
> - $n = 1 \rightarrow z = -\sqrt3 + i$
|
||||
> - $n = 2 \rightarrow z = -2i$
|
||||
> - $n = 3 \rightarrow z = \sqrt3 + i$
|
||||
> - $n = 4 \rightarrow z = -\sqrt3 + i$
|
||||
> - The solutions start repeating as you can see
|
||||
>
|
||||
> In general, an $n$-th order polynomial has exactly $n$ complex roots.
|
||||
> Some of these complex roots may be real numbers.
|
||||
>
|
||||
> 4. There are three solutions
|
||||
|
||||
</details>
|
||||
|
Before Width: | Height: | Size: 79 KiB |
@@ -1,265 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with matplotlib (http://matplotlib.org/) -->
|
||||
<svg id="svg6564" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns="http://www.w3.org/2000/svg" height="403pt" width="403pt" version="1.1" xmlns:cc="http://creativecommons.org/ns#" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 0 403 403" xmlns:dc="http://purl.org/dc/elements/1.1/">
|
||||
<defs>
|
||||
<style id="style6568" type="text/css">*{stroke-linecap:butt;stroke-linejoin:round;stroke-miterlimit:100000;}</style>
|
||||
<path id="m6d0dc4c4e2" stroke-width=".5" d="m0 0v-4" stroke="#000"/>
|
||||
<path id="m2997e254fe" stroke-width=".5" d="m0 0v4" stroke="#000"/>
|
||||
<path id="BitstreamVeraSans-Roman-31" d="m12.406 8.2969h16.11v55.625l-17.532-3.516v8.985l17.438 3.515h9.859v-64.609l16.11-0.0001v-8.2969h-41.985z"/>
|
||||
<path id="BitstreamVeraSans-Roman-2212" d="m10.594 35.5h62.594v-8.297h-62.594z"/>
|
||||
<path id="BitstreamVeraSans-Roman-30" d="m31.781 66.406q-7.609 0-11.453-7.5-3.828-7.484-3.828-22.531 0-14.984 3.828-22.484 3.844-7.5004 11.453-7.5004 7.672 0 11.5 7.5004 3.844 7.5 3.844 22.484 0 15.047-3.844 22.531-3.828 7.5-11.5 7.5m0 7.813q12.266 0 18.735-9.703 6.468-9.688 6.468-28.141 0-18.406-6.468-28.109-6.469-9.6879-18.735-9.6879-12.25 0-18.719 9.6875-6.4682 9.7034-6.4682 28.109 0 18.453 6.4682 28.141 6.469 9.703 18.719 9.703"/>
|
||||
<path id="BitstreamVeraSans-Roman-78" d="m54.891 54.688l-19.782-26.61 20.797-28.078h-10.594l-15.921 21.484-15.907-21.484h-10.609l21.25 28.609-19.438 26.079h10.594l14.5-19.485 14.5 19.485z"/>
|
||||
<path id="md69bb88a81" stroke-width=".5" d="m0 0h4" stroke="#000"/>
|
||||
<path id="m1d1e712049" stroke-width=".5" d="m0 0h-4" stroke="#000"/>
|
||||
<path id="BitstreamVeraSans-Roman-79" d="m32.172-5.0781q-3.797-9.7659-7.422-12.734-3.609-2.985-9.656-2.985h-7.1878v7.516h5.2818q3.703 0 5.75 1.765 2.062 1.7504 4.546 8.2972l1.61 4.0938-22.11 53.813h9.516l17.094-42.766 17.094 42.766h9.515z"/>
|
||||
<path id="BitstreamVeraSans-Roman-3d" d="m10.594 45.406h62.594v-8.203h-62.594zm0-19.922h62.594v-8.296h-62.594z"/>
|
||||
<path id="BitstreamVeraSans-Roman-28" d="m31 75.875q-6.531-11.219-9.719-22.219-3.172-10.984-3.172-22.265 0-11.266 3.203-22.328 3.204-11.063 9.688-22.251h-7.812q-7.313 11.485-10.954 22.563-3.6402 11.078-3.6402 22.016 0 10.89 3.6092 21.921 3.625 11.047 10.985 22.563z"/>
|
||||
<path id="BitstreamVeraSans-Roman-69" d="m9.4219 54.688h8.9841v-54.688h-8.9841zm0 21.296h8.9841v-11.39h-8.9841z"/>
|
||||
<path id="BitstreamVeraSans-Roman-6e" d="m54.891 33.016v-33.016h-8.985v32.719q0 7.765-3.031 11.609-3.031 3.86-9.078 3.86-7.281 0-11.485-4.641-4.203-4.625-4.203-12.641v-30.906h-9.0309v54.688h9.0309v-8.5q3.235 4.937 7.594 7.374 4.375 2.438 10.094 2.438 9.422 0 14.25-5.828 4.844-5.828 4.844-17.156"/>
|
||||
<path id="BitstreamVeraSans-Roman-29" d="m8.0156 75.875h7.8124q7.313-11.516 10.953-22.563 3.641-11.031 3.641-21.921 0-10.938-3.641-22.016-3.64-11.078-10.953-22.563h-7.8124q6.4844 11.188 9.6874 22.25 3.203 11.063 3.203 22.329 0 11.281-3.203 22.265-3.203 11-9.6874 22.219"/>
|
||||
<path id="BitstreamVeraSans-Roman-73" d="m44.281 53.078v-8.5q-3.797 1.953-7.906 2.922-4.094 0.984-8.5 0.984-6.687 0-10.031-2.046-3.344-2.047-3.344-6.157 0-3.125 2.391-4.906 2.39-1.781 9.625-3.391l3.078-0.687q9.562-2.047 13.594-5.781 4.031-3.735 4.031-10.422 0-7.6252-6.031-12.078-6.032-4.4379-16.579-4.4379-4.39 0-9.156 0.8594-4.765 0.85938-10.031 2.5625l-0.0001 9.281q4.9841-2.5935 9.8121-3.8904 4.828-1.2812 9.578-1.2812 6.344 0 9.75 2.1718 3.422 2.1718 3.422 6.1248 0 3.656-2.468 5.61-2.454 1.953-10.813 3.765l-3.125 0.735q-8.344 1.75-12.062 5.39-3.7035 3.641-3.7035 9.985 0 7.718 5.4685 11.906 5.469 4.203 15.531 4.203 4.969 0 9.36-0.734 4.406-0.719 8.109-2.188"/>
|
||||
<path id="BitstreamVeraSans-Roman-68" d="m54.891 33.016v-33.016h-8.985v32.719q0 7.765-3.031 11.609-3.031 3.86-9.078 3.86-7.281 0-11.485-4.641-4.203-4.625-4.203-12.641v-30.906h-9.0309v75.984h9.0309v-29.796q3.235 4.937 7.594 7.374 4.375 2.438 10.094 2.438 9.422 0 14.25-5.828 4.844-5.828 4.844-17.156"/>
|
||||
<path id="BitstreamVeraSans-Roman-63" d="m48.781 52.594v-8.406q-3.812 2.109-7.64 3.156-3.829 1.047-7.735 1.047-8.75 0-13.594-5.547-4.828-5.532-4.828-15.547 0-10.016 4.828-15.563 4.844-5.5309 13.594-5.5309 3.906 0 7.735 1.0469 3.828 1.0469 7.64 3.156v-8.3122q-3.765-1.75-7.797-2.625-4.015-0.8907-8.562-0.8907-12.36 0-19.641 7.7657-7.2654 7.7652-7.2654 20.953 0 13.375 7.3434 21.031 7.36 7.672 20.157 7.672 4.14 0 8.093-0.859 3.953-0.844 7.672-2.547"/>
|
||||
<path id="BitstreamVeraSans-Roman-6f" d="m30.609 48.391q-7.218 0-11.421-5.641-4.204-5.641-4.204-15.453 0-9.813 4.172-15.453 4.188-5.6409 11.453-5.6409 7.188 0 11.375 5.6559 4.204 5.672 4.204 15.438 0 9.719-4.204 15.406-4.187 5.688-11.375 5.688m0 7.609q11.719 0 18.407-7.625 6.703-7.609 6.703-21.078 0-13.422-6.703-21.078-6.688-7.6409-18.407-7.6409-11.765 0-18.437 7.6407-6.6564 7.6562-6.6564 21.078 0 13.469 6.6564 21.078 6.672 7.625 18.437 7.625"/>
|
||||
<path id="BitstreamVeraSans-Roman-61" d="m34.281 27.484q-10.89 0-15.093-2.484-4.204-2.484-4.204-8.5 0-4.781 3.157-7.5938 3.156-2.7968 8.562-2.7968 7.485 0 12 5.2966 4.516 5.297 4.516 14.078v2zm17.922 3.719v-31.203h-8.984v8.2969q-3.078-4.9688-7.672-7.3438t-11.235-2.375q-8.39 0-13.359 4.7188-4.953 4.7187-4.953 12.625 0 9.219 6.172 13.906 6.187 4.688 18.437 4.688h12.61v0.89q0 6.203-4.078 9.594-4.079 3.391-11.453 3.391-4.688 0-9.141-1.125-4.438-1.125-8.531-3.375v8.312q4.922 1.906 9.562 2.844 4.641 0.953 9.031 0.953 11.875 0 17.735-6.156 5.859-6.141 5.859-18.641"/>
|
||||
<path id="BitstreamVeraSans-Roman-74" d="m18.312 70.219v-15.531h18.5v-6.985h-18.5v-29.687q0-6.688 1.829-8.5941 1.828-1.9063 7.453-1.9063h9.218v-7.5156h-9.218q-10.406 0-14.36 3.875-3.9528 3.8906-3.9528 14.141v29.687h-6.5937v6.985h6.5937v15.531z"/>
|
||||
<clipPath id="p875ac5675d">
|
||||
<rect id="rect6866" y="12.96" width="338.8" x="51.435" height="344.88"/>
|
||||
</clipPath>
|
||||
</defs>
|
||||
<metadata id="metadata6870">
|
||||
<rdf:RDF>
|
||||
<cc:Work rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
|
||||
<dc:title/>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g id="figure_1">
|
||||
<g id="patch_1">
|
||||
<path id="path6572" fill="none" d="m0 403.2h403.2v-403.2h-403.2v403.2z"/>
|
||||
</g>
|
||||
<g id="axes_1">
|
||||
<g id="patch_2">
|
||||
<path id="path6576" fill="none" d="m51.435 357.84h338.8v-344.88h-338.8l-0.005 344.88z"/>
|
||||
</g>
|
||||
<g id="line2d_1">
|
||||
<path id="path7422" stroke-linejoin="round" d="m202.58 447.3l2.46-19.45 2.97-21.01 2.96-18.8 2.97-16.83 2.97-15.08 2.97-13.52 2.96-12.12 2.97-10.88 2.97-9.77 2.97-8.79 2.96-7.92 2.97-7.14 2.97-6.46 2.97-5.87 3.39-6.05 3.39-5.47 3.39-4.97 3.82-5.09 4.24-5.17 4.66-5.24 6.36-6.68 13.56-14.09 4.67-5.31 4.24-5.26 3.81-5.2 3.39-5.09 3.39-5.6 2.97-5.41 2.97-5.94 2.97-6.56 2.96-7.25 2.97-8.03 2.97-8.92 2.97-9.93 2.96-11.04 2.97-12.31 2.55-11.68 2.54-12.819 2.54-14.09 2.55-15.489 2.54-17.03 2.54-18.729 1.61-13.013" transform="scale(.8)" stroke="#b30000" stroke-miterlimit="1e5" stroke-width="2.5" fill="none"/>
|
||||
</g>
|
||||
<g id="line2d_2">
|
||||
<path id="path7415" stroke-linejoin="round" d="m202.79 16.2l0.55 4.635 2.97 22.175 2.97 19.799 2.97 17.675 2.96 15.771 2.97 14.065 2.97 12.54 2.97 11.17 2.96 9.94 2.97 8.83 2.97 7.84 2.97 6.95 2.96 6.13 2.97 5.41 2.54 4.11 2.55 3.66 2.54 3.24 2.54 2.86 2.55 2.5 2.54 2.17 2.55 1.85 2.54 1.55 2.54 1.27 2.55 1 2.54 0.74 2.54 0.48 2.55 0.22 2.54-0.02 2.54-0.27 2.55-0.52 2.54-0.78 2.54-1.04 2.55-1.32 2.54-1.6 2.55-1.9 2.54-2.22 2.54-2.56 2.55-2.92 2.54-3.31 2.54-3.73 2.55-4.19 2.54-4.68 2.54-5.21 2.55-5.8 2.54-6.43 2.55-7.14 2.54-7.9 2.54-8.73 2.55-9.65 2.54-10.66 2.54-11.76 2.55-12.976 2.54-14.31 2.54-15.774 2.55-17.387 2.54-19.158 0.56-4.635" transform="scale(.8)" stroke="#00b300" stroke-miterlimit="1e5" stroke-dasharray="7.5, 7.50000000000000000" stroke-width="2.5" fill="none"/>
|
||||
</g>
|
||||
<g id="line2d_3">
|
||||
<path id="path6585" d="m51.435 206.95l106.16-0.1 12.2-0.24 7.46-0.35 5.76-0.48 4.41-0.59 3.73-0.7 3.39-0.86 3.06-1 2.71-1.1 2.71-1.34 2.72-1.59 2.71-1.86 2.71-2.13 3.05-2.69 3.73-3.6 10.18-10.06 3.05-2.62 2.71-2.07 2.72-1.79 2.71-1.53 2.71-1.28 3.06-1.16 3.05-0.92 3.39-0.79 3.73-0.65 4.41-0.53 5.43-0.43 7.12-0.31 10.17-0.21 17.98-0.1 61.38-0.02h28.49" clip-path="url(#p875ac5675d)" stroke="#0000b3" stroke-dasharray="1.000000,3.000000" stroke-width="2" fill="none"/>
|
||||
</g>
|
||||
<g id="patch_3">
|
||||
<path id="path6588" d="m51.435 357.84h338.8" stroke="#000" stroke-linecap="square" fill="none"/>
|
||||
</g>
|
||||
<g id="patch_4">
|
||||
<path id="path6591" d="m51.435 357.84v-344.88" stroke="#000" stroke-linecap="square" fill="none"/>
|
||||
</g>
|
||||
<g id="patch_5">
|
||||
<path id="path6594" d="m390.24 357.84v-344.88" stroke="#000" stroke-linecap="square" fill="none"/>
|
||||
</g>
|
||||
<g id="patch_6">
|
||||
<path id="path6597" d="m51.435 12.96h338.8" stroke="#000" stroke-linecap="square" fill="none"/>
|
||||
</g>
|
||||
<g id="matplotlib.axis_1">
|
||||
<g id="xtick_1">
|
||||
<g id="line2d_4">
|
||||
<path id="path6602" d="m199.66 357.84v-344.88" clip-path="url(#p875ac5675d)" stroke="#000" stroke-dasharray="1.000000,3.000000" stroke-width=".5" fill="none"/>
|
||||
</g>
|
||||
<g id="line2d_5">
|
||||
<g id="g6608">
|
||||
<use id="use6610" xlink:href="#m6d0dc4c4e2" stroke="#000000" y="357.84" x="199.6621875" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_6">
|
||||
<g id="g6616">
|
||||
<use id="use6618" xlink:href="#m2997e254fe" stroke="#000000" y="12.96" x="199.6621875" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_1"><!-- −1 -->
|
||||
<g id="g6625" transform="translate(190.82 370.96) scale(.12 -.12)">
|
||||
<use id="use6627" xlink:href="#BitstreamVeraSans-Roman-2212"/>
|
||||
<use id="use6629" x="83.7890625" xlink:href="#BitstreamVeraSans-Roman-31"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_2">
|
||||
<g id="line2d_7">
|
||||
<path id="path6633" d="m220.84 357.84v-344.88" clip-path="url(#p875ac5675d)" stroke="#000" stroke-dasharray="1.000000,3.000000" stroke-width=".5" fill="none"/>
|
||||
</g>
|
||||
<g id="line2d_8">
|
||||
<g id="g6636">
|
||||
<use id="use6638" xlink:href="#m6d0dc4c4e2" stroke="#000000" y="357.84" x="220.8375" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_9">
|
||||
<g id="g6641">
|
||||
<use id="use6643" xlink:href="#m2997e254fe" stroke="#000000" y="12.96" x="220.8375" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_2"><!-- 0 -->
|
||||
<g id="g6649" transform="translate(217.02 370.96) scale(.12 -.12)">
|
||||
<use id="use6651" xlink:href="#BitstreamVeraSans-Roman-30"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_3">
|
||||
<g id="line2d_10">
|
||||
<path id="path6655" d="m242.01 357.84v-344.88" clip-path="url(#p875ac5675d)" stroke="#000" stroke-dasharray="1.000000,3.000000" stroke-width=".5" fill="none"/>
|
||||
</g>
|
||||
<g id="line2d_11">
|
||||
<g id="g6658">
|
||||
<use id="use6660" xlink:href="#m6d0dc4c4e2" stroke="#000000" y="357.84" x="242.0128125" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_12">
|
||||
<g id="g6663">
|
||||
<use id="use6665" xlink:href="#m2997e254fe" stroke="#000000" y="12.96" x="242.0128125" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_3"><!-- 1 -->
|
||||
<g id="g6668" transform="translate(238.2 370.96) scale(.12 -.12)">
|
||||
<use id="use6670" xlink:href="#BitstreamVeraSans-Roman-31"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_4"><!-- x -->
|
||||
<g id="g6676" transform="translate(217.29 387.57) scale(.12 -.12)">
|
||||
<use id="use6678" xlink:href="#BitstreamVeraSans-Roman-78"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="matplotlib.axis_2">
|
||||
<g id="ytick_1">
|
||||
<g id="line2d_13">
|
||||
<path id="path6683" d="m51.435 206.96h338.8" clip-path="url(#p875ac5675d)" stroke="#000" stroke-dasharray="1.000000,3.000000" stroke-width=".5" fill="none"/>
|
||||
</g>
|
||||
<g id="line2d_14">
|
||||
<g id="g6689">
|
||||
<use id="use6691" xlink:href="#md69bb88a81" stroke="#000000" y="206.955" x="51.435" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_15">
|
||||
<g id="g6697">
|
||||
<use id="use6699" xlink:href="#m1d1e712049" stroke="#000000" y="206.955" x="390.24" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_5"><!-- −1 -->
|
||||
<g id="g6702" transform="translate(29.744 210.27) scale(.12 -.12)">
|
||||
<use id="use6704" xlink:href="#BitstreamVeraSans-Roman-2212"/>
|
||||
<use id="use6706" x="83.7890625" xlink:href="#BitstreamVeraSans-Roman-31"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_2">
|
||||
<g id="line2d_16">
|
||||
<path id="path6710" d="m51.435 185.4h338.8" clip-path="url(#p875ac5675d)" stroke="#000" stroke-dasharray="1.000000,3.000000" stroke-width=".5" fill="none"/>
|
||||
</g>
|
||||
<g id="line2d_17">
|
||||
<g id="g6713">
|
||||
<use id="use6715" xlink:href="#md69bb88a81" stroke="#000000" y="185.4" x="51.435" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_18">
|
||||
<g id="g6718">
|
||||
<use id="use6720" xlink:href="#m1d1e712049" stroke="#000000" y="185.4" x="390.24" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_6"><!-- 0 -->
|
||||
<g id="g6723" transform="translate(39.8 188.71) scale(.12 -.12)">
|
||||
<use id="use6725" xlink:href="#BitstreamVeraSans-Roman-30"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_3">
|
||||
<g id="line2d_19">
|
||||
<path id="path6729" d="m51.435 163.84h338.8" clip-path="url(#p875ac5675d)" stroke="#000" stroke-dasharray="1.000000,3.000000" stroke-width=".5" fill="none"/>
|
||||
</g>
|
||||
<g id="line2d_20">
|
||||
<g id="g6732">
|
||||
<use id="use6734" xlink:href="#md69bb88a81" stroke="#000000" y="163.845" x="51.435" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_21">
|
||||
<g id="g6737">
|
||||
<use id="use6739" xlink:href="#m1d1e712049" stroke="#000000" y="163.845" x="390.24" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_7"><!-- 1 -->
|
||||
<g id="g6742" transform="translate(39.8 167.16) scale(.12 -.12)">
|
||||
<use id="use6744" xlink:href="#BitstreamVeraSans-Roman-31"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_8"><!-- y -->
|
||||
<g id="g6750" transform="translate(22.249 188.95) rotate(-90) scale(.12 -.12)">
|
||||
<use id="use6752" xlink:href="#BitstreamVeraSans-Roman-79"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="legend_1">
|
||||
<g id="patch_7">
|
||||
<path id="path6756" d="m248.34 350.64h134.7v-67.73h-134.7z" stroke="#000" fill="#fff"/>
|
||||
</g>
|
||||
<g id="line2d_22">
|
||||
<path id="path6759" d="m258.42 294.57h20.16" stroke="#b30000" stroke-linecap="square" stroke-width="2" fill="none"/>
|
||||
</g>
|
||||
<g id="text_9"><!-- y = sinh(x) -->
|
||||
<g id="g6773" transform="translate(294.42 299.61) scale(.144 -.144)">
|
||||
<use id="use6775" xlink:href="#BitstreamVeraSans-Roman-79"/>
|
||||
<use id="use6777" x="59.1796875" xlink:href="#BitstreamVeraSans-Roman-20"/>
|
||||
<use id="use6779" x="90.966796875" xlink:href="#BitstreamVeraSans-Roman-3d"/>
|
||||
<use id="use6781" x="174.755859375" xlink:href="#BitstreamVeraSans-Roman-20"/>
|
||||
<use id="use6783" x="206.54296875" xlink:href="#BitstreamVeraSans-Roman-73"/>
|
||||
<use id="use6785" x="258.642578125" xlink:href="#BitstreamVeraSans-Roman-69"/>
|
||||
<use id="use6787" x="286.42578125" xlink:href="#BitstreamVeraSans-Roman-6e"/>
|
||||
<use id="use6789" x="349.8046875" xlink:href="#BitstreamVeraSans-Roman-68"/>
|
||||
<use id="use6791" x="413.18359375" xlink:href="#BitstreamVeraSans-Roman-28"/>
|
||||
<use id="use6793" x="452.197265625" xlink:href="#BitstreamVeraSans-Roman-78"/>
|
||||
<use id="use6795" x="511.376953125" xlink:href="#BitstreamVeraSans-Roman-29"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_24">
|
||||
<path id="path6798" d="m258.42 315.71h20.16" stroke="#00b300" stroke-dasharray="6.000000,6.000000" stroke-width="2" fill="none"/>
|
||||
</g>
|
||||
<g id="text_10"><!-- y = cosh(x) -->
|
||||
<g id="g6806" transform="translate(294.42 320.75) scale(.144 -.144)">
|
||||
<use id="use6808" xlink:href="#BitstreamVeraSans-Roman-79"/>
|
||||
<use id="use6810" x="59.1796875" xlink:href="#BitstreamVeraSans-Roman-20"/>
|
||||
<use id="use6812" x="90.966796875" xlink:href="#BitstreamVeraSans-Roman-3d"/>
|
||||
<use id="use6814" x="174.755859375" xlink:href="#BitstreamVeraSans-Roman-20"/>
|
||||
<use id="use6816" x="206.54296875" xlink:href="#BitstreamVeraSans-Roman-63"/>
|
||||
<use id="use6818" x="261.5234375" xlink:href="#BitstreamVeraSans-Roman-6f"/>
|
||||
<use id="use6820" x="322.705078125" xlink:href="#BitstreamVeraSans-Roman-73"/>
|
||||
<use id="use6822" x="374.8046875" xlink:href="#BitstreamVeraSans-Roman-68"/>
|
||||
<use id="use6824" x="438.18359375" xlink:href="#BitstreamVeraSans-Roman-28"/>
|
||||
<use id="use6826" x="477.197265625" xlink:href="#BitstreamVeraSans-Roman-78"/>
|
||||
<use id="use6828" x="536.376953125" xlink:href="#BitstreamVeraSans-Roman-29"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_26">
|
||||
<path id="path6831" d="m258.42 336.85h20.16" stroke="#0000b3" stroke-dasharray="1.000000,3.000000" stroke-width="2" fill="none"/>
|
||||
</g>
|
||||
<g id="text_11"><!-- y = tanh(x) -->
|
||||
<g id="g6839" transform="translate(294.42 341.89) scale(.144 -.144)">
|
||||
<use id="use6841" xlink:href="#BitstreamVeraSans-Roman-79"/>
|
||||
<use id="use6843" x="59.1796875" xlink:href="#BitstreamVeraSans-Roman-20"/>
|
||||
<use id="use6845" x="90.966796875" xlink:href="#BitstreamVeraSans-Roman-3d"/>
|
||||
<use id="use6847" x="174.755859375" xlink:href="#BitstreamVeraSans-Roman-20"/>
|
||||
<use id="use6849" x="206.54296875" xlink:href="#BitstreamVeraSans-Roman-74"/>
|
||||
<use id="use6851" x="245.751953125" xlink:href="#BitstreamVeraSans-Roman-61"/>
|
||||
<use id="use6853" x="307.03125" xlink:href="#BitstreamVeraSans-Roman-6e"/>
|
||||
<use id="use6855" x="370.41015625" xlink:href="#BitstreamVeraSans-Roman-68"/>
|
||||
<use id="use6857" x="433.7890625" xlink:href="#BitstreamVeraSans-Roman-28"/>
|
||||
<use id="use6859" x="472.802734375" xlink:href="#BitstreamVeraSans-Roman-78"/>
|
||||
<use id="use6861" x="531.982421875" xlink:href="#BitstreamVeraSans-Roman-29"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 18 KiB |
|
Before Width: | Height: | Size: 59 KiB |
|
Before Width: | Height: | Size: 53 KiB |
|
Before Width: | Height: | Size: 12 KiB |
|
Before Width: | Height: | Size: 12 KiB |
|
Before Width: | Height: | Size: 12 KiB |
|
Before Width: | Height: | Size: 33 KiB |
|
Before Width: | Height: | Size: 23 KiB |
|
Before Width: | Height: | Size: 891 B |
|
Before Width: | Height: | Size: 180 B |
|
Before Width: | Height: | Size: 12 KiB |
|
Before Width: | Height: | Size: 21 KiB |
|
Before Width: | Height: | Size: 63 KiB |
|
Before Width: | Height: | Size: 6.5 KiB |
|
Before Width: | Height: | Size: 18 KiB |
|
Before Width: | Height: | Size: 17 KiB |
|
Before Width: | Height: | Size: 11 KiB |
@@ -1,753 +0,0 @@
|
||||
---
|
||||
author: Alvie Rahman
|
||||
date: \today
|
||||
title: MMME1026 // Systems of Equations and Matrices
|
||||
tags:
|
||||
- uni
|
||||
- nottingham
|
||||
- mechanical
|
||||
- engineering
|
||||
- mmme1026
|
||||
- maths
|
||||
- systems_of_equations
|
||||
- matrices
|
||||
uuid: 16edb140-9946-4759-93df-50cad510fe31
|
||||
---
|
||||
# Systems of Equations (Simultaneous Equations)
|
||||
|
||||
## Gaussian Elimination
|
||||
|
||||
Gaussian eliminiation can be used when the number of unknown variables you have is equal to the
|
||||
number of equations you are given.
|
||||
|
||||
I'm pretty sure it's the name for the method you use to solve simultaneous equations in school.
|
||||
|
||||
For example if you have 1 equation and 1 unknown:
|
||||
|
||||
\begin{align*}
|
||||
2x &= 6 \\
|
||||
x &= 3
|
||||
\end{align*}
|
||||
|
||||
### Number of Solutions
|
||||
|
||||
Let's generalise the example above to
|
||||
|
||||
$$ax = b$$
|
||||
|
||||
There are 3 possible cases:
|
||||
|
||||
\begin{align*}
|
||||
a \ne 0 &\rightarrow x = \frac b a \\
|
||||
a = 0, b \ne 0 &\rightarrow \text{no solution for $x$} \\
|
||||
a = 0, b = 0 &\rightarrow \text{infinite solutions for $x$}
|
||||
\end{align*}
|
||||
|
||||
### 2x2 Systems
|
||||
|
||||
A 2x2 system is one with 2 equations and 2 unknown variables.
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
\begin{align*}
|
||||
3x_1 + 4x_2 &= 2 &\text{(1)} \\
|
||||
x_1 + 2x_2 &= 0 &\text{(2)} \\
|
||||
\end{align*}
|
||||
|
||||
</summary>
|
||||
|
||||
\begin{align*}
|
||||
3\times\text{(2)} = 3x_1 + 6x_2 &= 0 &\text{(3)} \\
|
||||
\text{(3)} - \text{(1)} = 0x_1 + 2x_2 &= -2 \\
|
||||
x_2 &= -1
|
||||
\end{align*}
|
||||
|
||||
We've essentially created a 1x1 system for $x_2$ and now that's solved we can back substitute it
|
||||
into equation (1) (or equation (2), it doesn't matter) to work out the value of $x_1$:
|
||||
|
||||
\begin{align*}
|
||||
3x_1 + 4x_2 &= 2 \\
|
||||
3x_1 - 1 &= 2 \\
|
||||
3x_1 &= 6 \\
|
||||
x_1 &= 2
|
||||
\end{align*}
|
||||
|
||||
You can check the values for $x_1$ and $x_2$ are correct by substituting them into equation (2).
|
||||
|
||||
</details>
|
||||
|
||||
### 3x3 Systems
|
||||
|
||||
A 3x3 system is one with 3 equations and 3 unknown variables.
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
\begin{align*}
|
||||
2x_1 + 3x_2 - x_3 &= 5 &\text{(1)} \\
|
||||
4x_1 + 4x_2 - 3x_3 &= 5 &\text{(2)} \\
|
||||
2x_1 - 3x_2 + x_3 &= 5 &\text{(3)} \\
|
||||
\end{align*}
|
||||
|
||||
</summary>
|
||||
|
||||
The first step is to eliminate $x_1$ from (2) and (3) using (1):
|
||||
|
||||
\begin{align*}
|
||||
\text{(2)}-2\times\text{(1)} = -2x_2 -x_3 &= -1 &\text{(4)} \\
|
||||
\text{(3)}-\text{(1)} = -6x_2 + 3x_3 &= -6 &\text{(5)} \\
|
||||
\end{align*}
|
||||
|
||||
This has created a 2x2 system of $x_2$ and $x_3$ which can be solved as any other 2x2 system.
|
||||
I'm too lazy to type up the working, but it is solved like any other 2x2 system.
|
||||
|
||||
\begin{align*}
|
||||
x_2 &= -2
|
||||
x_3 &= 5
|
||||
\end{align*}
|
||||
|
||||
These values can be back-substituted into any of the first 3 equations to find out $x_1$:
|
||||
|
||||
\begin{align*}
|
||||
-2x_1 + 3x_2 - x_3 = 2x_1 + 6 - 3 = 5 \rightarrow x_1 = 1
|
||||
\end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 2
|
||||
|
||||
\begin{align*}
|
||||
x_1 + x_2 - 2x_3 &= 1 &R_1 \\
|
||||
2x_1 - x_2 - x_3 &= 1 &R_2 \\
|
||||
x_1 + 4x_2 + 7x_3 &= 2 &R_3 \\
|
||||
\end{align*}
|
||||
|
||||
</summary>
|
||||
|
||||
1. Eliminate $x_1$ from $R_2$, $R_3$:
|
||||
|
||||
\begin{align*}
|
||||
x_1 + x_2 - 2x_3 &= 1 &R_1' = R_1\\
|
||||
- 3x_2 - 5x_3 &= -1 &R_2' = R_2 - 2R_1 \\
|
||||
3x_2 + 5x_3 &= 1 &R_3' = R_3 - R_1 \\
|
||||
\end{align*}
|
||||
|
||||
We've created another 2x2 system of $R_2'$ and $R_3'$
|
||||
|
||||
2. Eliminate $x_2$ from $R_3''$
|
||||
|
||||
\begin{align*}
|
||||
x_1 + x_2 - 2x_3 &= 1 &R_1'' = R_1' = R_1\\
|
||||
- 3x_2 - 5x_3 &= -1 &R_2'' = R_2' = R_2 - 2R_1 \\
|
||||
0x_3 &= 0 &R_3'' = R_3 '+ R_2' \\
|
||||
\end{align*}
|
||||
|
||||
We can see that $x_3$ can be any number, so there are infinite solutions. Let:
|
||||
|
||||
$$x_3 = t$$
|
||||
|
||||
where $t$ can be any number
|
||||
|
||||
3. Substitute $x_3$ into $R_2''$:
|
||||
|
||||
$$R_2'' = -3x_2 - 5t = -1 \rightarrow x_2 = \frac 1 3 - \frac{5t} 3$$
|
||||
|
||||
4. Substitute $x_2$ and $x_3$ into $R_1''$:
|
||||
|
||||
$$R_1'' = x_1 + \frac 1 3 - \frac{5t} 3 + 2t = 1 \rightarrow x_1 = \frac 2 3 - \frac t 3$$
|
||||
|
||||
</details>
|
||||
|
||||
## Systems of Equations and Matrices
|
||||
|
||||
Many problems in engineering have a very large number of unknowns and equations to solve
|
||||
simultaneously.
|
||||
We can use matrices to solve these efficiently.
|
||||
|
||||
Take the following simultaneous equations::
|
||||
|
||||
\begin{align*}
|
||||
3x_1 + 4x_2 &= 2 &\text{(1)} \\
|
||||
x_1 + 2x_2 &= 0 &\text{(2)}
|
||||
\end{align*}
|
||||
|
||||
They can be represented by the following matrices:
|
||||
|
||||
\begin{align*}
|
||||
A &= \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} \\
|
||||
\pmb x &= \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\
|
||||
\pmb b &= \begin{pmatrix} 2 \\ 0 \end{pmatrix} \\
|
||||
\end{align*}
|
||||
|
||||
You can then express the system as:
|
||||
|
||||
$$A\pmb x = \pmb b$$
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### A 3x3 System as a Matrix
|
||||
|
||||
</summary>
|
||||
|
||||
\begin{align*}
|
||||
2x_1 + 3x_2 - x_3 &= 5 \\
|
||||
4x_1 + 4x_2 - 3x_3 &= 3 \\
|
||||
2x_1 - 3x_2 + x_3 &= -1
|
||||
\end{align*}
|
||||
|
||||
Could be expressed in the form $A\pmb x = \pmb b$ where:
|
||||
|
||||
\begin{align*}
|
||||
A &= \begin{pmatrix} 2 & 3 & -1 \\ 4 & 4 & -3 \\ 2 & -3 & -1 \end{pmatrix} \\
|
||||
\pmb x &= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\
|
||||
\pmb b &= \begin{pmatrix} 5 \\ 3 \\ -1 \end{pmatrix} \\
|
||||
\end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### An $m\times n$ System as a Matrix
|
||||
|
||||
</summary>
|
||||
|
||||
\begin{align*}
|
||||
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
|
||||
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
|
||||
\cdots \\
|
||||
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m \\
|
||||
\end{align*}
|
||||
|
||||
Could be expressed in the form $A\pmb x = \pmb b$ where:
|
||||
|
||||
\begin{align*}
|
||||
A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\
|
||||
a_{21} & a_{22} & \cdots & a_{2n} \\
|
||||
\vdots & & & \vdots \\
|
||||
a_{m1} & a_{m2} & \cdots & a_{mn}
|
||||
\end{pmatrix},
|
||||
\pmb x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},
|
||||
\pmb b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}
|
||||
\end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
# Matrices
|
||||
|
||||
## Order of a Matrix
|
||||
|
||||
The order of a matrix is its size e.g. $3\times2$ or $m\times n$
|
||||
|
||||
## Column Vectors
|
||||
|
||||
- Column vectors are matrices with only one column:
|
||||
|
||||
$$ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 45 \\ 12 \end{pmatrix} $$
|
||||
|
||||
- Column vector variables typed up or printed are expressed in $\pmb{bold}$ and when it is
|
||||
handwritten it is \underline{underlined}:
|
||||
|
||||
$$ \pmb x = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$
|
||||
|
||||
## Matrix Algebra
|
||||
|
||||
### Equality
|
||||
|
||||
Two matrices are the same if:
|
||||
|
||||
- Their order is the same
|
||||
- Their corresponding elements are the same
|
||||
|
||||
### Addition and Subtraction
|
||||
|
||||
Only possible if their order is the same.
|
||||
\begin{align*}
|
||||
A + B&= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\
|
||||
a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\
|
||||
\vdots & & & \vdots \\
|
||||
a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn}
|
||||
\end{pmatrix} \\
|
||||
A - B&= \begin{pmatrix} a_{11} - b_{11} & a_{12} - b_{12} & \cdots & a_{1n} - b_{1n} \\
|
||||
a_{21} - b_{21} & a_{22} - b_{22} & \cdots & a_{2n} - b_{2n} \\
|
||||
\vdots & & & \vdots \\
|
||||
a_{m1} - b_{m1} & a_{m2} - b_{m2} & \cdots & a_{mn} - b_{mn}
|
||||
\end{pmatrix},
|
||||
\end{align*}
|
||||
|
||||
### Zero Matrix
|
||||
|
||||
This is a matrix whose elements are all zeros.
|
||||
For any matrix $A$,
|
||||
|
||||
$$A + 0 =A$$
|
||||
|
||||
We can only add matrices of the same order, therefore 0 must be of the same order as $A$.
|
||||
|
||||
### Multiplication
|
||||
|
||||
Let
|
||||
|
||||
$$
|
||||
\begin{matrix}
|
||||
A & m\times n \\
|
||||
B & p\times q
|
||||
\end{matrix}
|
||||
$$
|
||||
|
||||
To be able to multiply $A$ by $B$, $n = p$.
|
||||
|
||||
If $n \ne p$, then $AB$ does not exist.
|
||||
|
||||
$$
|
||||
\begin{matrix}
|
||||
A & B & = & C \\
|
||||
m\times n & p \times q & & m\times q
|
||||
\end{matrix}
|
||||
$$
|
||||
|
||||
When $C = AB$ exists,
|
||||
|
||||
$$C_{ij} = \sum_r\! a_{ir}b_{rj}$$
|
||||
|
||||
That is, $C_{ij}$ is the 'product' of the $i$th row of $A$ and $j$th column of $B$.
|
||||
|
||||
#### Multiplication of a Matrix by a Scalar
|
||||
|
||||
If $\lambda$ is a scalar, we define
|
||||
|
||||
$$
|
||||
\lambda a = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\
|
||||
\lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\
|
||||
\vdots & & & \vdots \\
|
||||
\lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn}
|
||||
\end{pmatrix},
|
||||
$$
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
</summary>
|
||||
|
||||
$$
|
||||
\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}
|
||||
\begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix} =
|
||||
\begin{pmatrix} -3 & -1 \\ 3 & 4 \end{pmatrix}
|
||||
$$
|
||||
$$
|
||||
\begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}
|
||||
\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} =
|
||||
\begin{pmatrix} 2 & 1 \\ 7 & -1 \end{pmatrix}
|
||||
$$
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 2
|
||||
|
||||
</summary>
|
||||
|
||||
$$
|
||||
A = \begin{pmatrix} 4 & 1 & 6 \\ 3 & 2 & 1 \end{pmatrix},\,
|
||||
B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 0 \end{pmatrix}
|
||||
$$
|
||||
$$
|
||||
AB = \begin{pmatrix} 11 & 6 \\ 6 & 7 \end{pmatrix},\,
|
||||
BA = \begin{pmatrix} 7 & 3 & 7 \\ 10 & 5 & 8 \\ 4 & 1 & 6 \end{pmatrix}
|
||||
$$
|
||||
|
||||
</details>
|
||||
|
||||
### Other Properties of Matrix Algebra
|
||||
|
||||
- $(\lambda A)B = \lambda(AB) = A(\lambda B)$
|
||||
- $A(BC) = (AB)C = ABC$
|
||||
- $(A+B)C = AC + BC$
|
||||
- $C(A+B) = CA + CB$
|
||||
- In general, $AB \ne BA$ even if both exist
|
||||
- $AB = 0$ does not always mean $A = 0$ or $B = 0$:
|
||||
|
||||
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix}3 & 0 \\ 0 & 0 \end{pmatrix} =
|
||||
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$$
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
It follows that $AB = AC$ does not imply that $B=C$ as
|
||||
|
||||
$$AB = AC \leftrightarrow A(B + C) = 0$$
|
||||
|
||||
and as $A$ and $(B-C)$ are not necessarily 0, $B$ is not necessarily equal to $C$:
|
||||
|
||||
</summary>
|
||||
|
||||
$$AB = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix}0 & 0 \\ 1 & 0 \end{pmatrix} =
|
||||
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
|
||||
|
||||
and
|
||||
|
||||
$$AC = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix}1 & 2 \\ 1 & 0 \end{pmatrix} =
|
||||
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = AB$$
|
||||
|
||||
but $B \ne C$
|
||||
|
||||
</details>
|
||||
|
||||
## Special Matrices
|
||||
|
||||
### Square Matrix
|
||||
|
||||
Where $m = n$
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
A $3\times3$ matrix.
|
||||
|
||||
</summary>
|
||||
|
||||
$$\begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix}$$
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 2
|
||||
|
||||
A $2\times2$ matrix.
|
||||
|
||||
</summary>
|
||||
|
||||
$$\begin{pmatrix}1 & 2 \\ 4 & 5 \end{pmatrix}$$
|
||||
|
||||
</details>
|
||||
|
||||
### Identity Matrix
|
||||
|
||||
The identity matrix is a square matrix whose eleements are all 0, except the leading diagonal which
|
||||
is 1s.
|
||||
The leading diagonal is the top left to bottom right corner.
|
||||
|
||||
It is usually denoted by $I$ or $I_n$.
|
||||
|
||||
The identity matrix has the properties that
|
||||
|
||||
$$AI = IA = A$$
|
||||
|
||||
for any square matrix $A$ of the same order as I, and
|
||||
|
||||
$$Ix = x$$
|
||||
|
||||
for any vector $x$.
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
The $3\times3$ identity matrix.
|
||||
|
||||
</summary>
|
||||
|
||||
$$\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}$$
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 2
|
||||
|
||||
The $2\times2$ identity matrix.
|
||||
|
||||
</summary>
|
||||
|
||||
$$\begin{pmatrix}1 & 0 \\ 0 & 1 \end{pmatrix}$$
|
||||
|
||||
</details>
|
||||
|
||||
### Transposed Matrix
|
||||
|
||||
The transpose of matrix $A$ of order $m\times n$ is matrix $A^T$ which has the order $n\times m$.
|
||||
It is found by reflecting it along the leading diagonal, or interchanging the rows and columns of
|
||||
$A$.
|
||||
|
||||
](./images/Matrix_transpose.gif)
|
||||
|
||||
Let matrix $D = EF$, then $D^T = (EF)^T = E^TF^T$
|
||||
|
||||
#### Example 1
|
||||
|
||||
$$
|
||||
A = \begin{pmatrix}3 & 2 & 1 \\ 4 & 5 & 6 \end{pmatrix},\,
|
||||
A^T = \begin{pmatrix}3 & 4 \\ 2 & 5 \\ 1 & 6\end{pmatrix}
|
||||
$$
|
||||
|
||||
#### Example 2
|
||||
|
||||
$$
|
||||
B = \begin{pmatrix}1 \\ 4\end{pmatrix},\,
|
||||
B^T = \begin{pmatrix}1 & 4\end{pmatrix}
|
||||
$$
|
||||
|
||||
#### Example 3
|
||||
|
||||
$$
|
||||
C = \begin{pmatrix}1 & 2 & 3 \\ 0 & 5 & 1 \\ 2 & 3 & 7\end{pmatrix},\,
|
||||
C^T = \begin{pmatrix}1 & 0 & 2 \\ 2 & 5 & 4 \\ 3 & 1 & 7\end{pmatrix}
|
||||
$$
|
||||
|
||||
### Orthogonal Matrices
|
||||
|
||||
A matrix, $A$, such that
|
||||
|
||||
$$A^{-1} = A^T$$
|
||||
|
||||
is said to be orthogonal.
|
||||
|
||||
Another way to say this is
|
||||
|
||||
$$AA^T = A^TA = I$$
|
||||
|
||||
### Symmetric Matrices
|
||||
|
||||
A square matrix which is symmetric about its leading diagonal:
|
||||
|
||||
$$A = A^T$$
|
||||
|
||||
You can also express this as the matrix $A$, where
|
||||
|
||||
$$a_{ij} = a_{ji}$$
|
||||
|
||||
is satisfied to all elements.
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
</summary>
|
||||
|
||||
$$\begin{pmatrix}
|
||||
1 & 0 & -1 & 3 \\
|
||||
0 & 3 & 4 & -1 \\
|
||||
-2 & 4 & -1 & 6 \\
|
||||
3 & -7 & 6 & 2
|
||||
\end{pmatrix}$$
|
||||
|
||||
</details>
|
||||
|
||||
### Anti-Symmetric
|
||||
|
||||
A square matrix is anti-symmetric if
|
||||
|
||||
$$A = -A^T$$
|
||||
|
||||
This can also be expressed as
|
||||
|
||||
$$a_{ij} = -a_{ji}$$
|
||||
|
||||
This means that all elements on the leading diagonal must be 0.
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
</summary>
|
||||
|
||||
$$\begin{pmatrix}
|
||||
0 & -1 & 5 \\
|
||||
1 & 0 & 1 \\
|
||||
-5 & -1 & 0
|
||||
\end{pmatrix}$$
|
||||
|
||||
</details>
|
||||
|
||||
## The Determinant
|
||||
|
||||
### Determinant of a 2x2 System
|
||||
|
||||
The determinant of a $2x2$ system is
|
||||
|
||||
$$D = a_{11}a_{22} - a_{12}a_{21}$$
|
||||
|
||||
It is denoted by
|
||||
|
||||
$$
|
||||
\begin{vmatrix}
|
||||
a_{11} & a_{12} \\
|
||||
a_{21} & a_{22}
|
||||
\end{vmatrix}
|
||||
\text{ or }
|
||||
\det
|
||||
\begin{pmatrix}
|
||||
a_{11} & a_{12} \\
|
||||
a_{21} & a_{22}
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
- A system of equations has a unique solution if $D \ne 0$
|
||||
- If $D = 0$, then there are either
|
||||
|
||||
- no solutions (the equations are inconsistent)
|
||||
- intinitely many solutions
|
||||
|
||||
### Determinant of a 3x3 System
|
||||
|
||||
Let
|
||||
|
||||
$$
|
||||
A = \begin{pmatrix}
|
||||
a_{11} & a_{12} & a_{13} \\
|
||||
a_{21} & a_{22} & a_{23} \\
|
||||
a_{31} & a_{32} & a_{33}
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
\begin{align*}
|
||||
\det A = &a_{11} \times \det \begin{pmatrix}a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} \\
|
||||
&-a_{12} \times \det \begin{pmatrix}a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} \\
|
||||
&+a_{13} \times \det \begin{pmatrix}a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}
|
||||
\end{align*}
|
||||
|
||||
The $2x2$ matrices above are created by removing any elements on the same row or column as its corresponding
|
||||
coefficient:
|
||||
|
||||

|
||||
|
||||
### Chessboard Determinant
|
||||
|
||||
$\det A$ may be obtained by expanding out any row or column.
|
||||
To figure out which coefficients should be subtracted and which ones added use the chessboard
|
||||
pattern of signs:
|
||||
|
||||
$$\begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$$
|
||||
|
||||
### Properties of Determinants
|
||||
|
||||
- $$\det A = \det A^T$$
|
||||
- If all elements of one row of a matrix are multiplied by a constant $z$, the determinant of the
|
||||
new matrix is $z$ times the determinant of the original matrix:
|
||||
|
||||
\begin{align*}
|
||||
\begin{vmatrix} za & zb \\ c & d \end{vmatrix} &= zad - zbc \\
|
||||
&= z(ad-bc) \\
|
||||
&= z\begin{vmatrix} a & b \\ c & d \end{vmatrix}
|
||||
\end{align*}
|
||||
|
||||
This is also true if a column of a matrix is mutiplied by a constant.
|
||||
|
||||
**Application** if the fator $z$ appears in each elements of a row or column of a determinant it
|
||||
can be factored out
|
||||
|
||||
$$\begin{vmatrix}2 & 12 \\ 1 & 3 \end{vmatrix} = 2\begin{vmatrix}1 & 6 \\ 1 & 3 \end{vmatrix} = 2 \times 3
|
||||
\begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix}$$
|
||||
|
||||
**Application** if all elements in one row or column of a matrix are zero, the value of the
|
||||
determinant is 0.
|
||||
|
||||
$$\begin{vmatrix} 0 & 0 \\ c & d \end{vmatrix} = 0\times d - 0\times c = 0$$
|
||||
|
||||
|
||||
**Application** if $A$ is an $n\times n$ matrix,
|
||||
|
||||
$$\det(zA) = z^n\det A$$
|
||||
|
||||
- Swapping any two rows or columns of a matrix changes the sign of the determinant
|
||||
|
||||
\begin{align*}
|
||||
\begin{vmatrix} c & d \\ a & b \end{vmatrix} &= cb - ad \\
|
||||
&= -(ad - bc) \\
|
||||
&= -\begin{vmatrix} a & b \\ c & d \end{vmatrix}
|
||||
\end{align*}
|
||||
|
||||
**Application** If any two rows or two columns are identical, the determinant is zero.
|
||||
|
||||
**Application** If any row is a mutiple of another, or a column a multiple of another column, the
|
||||
determinant is zero.
|
||||
|
||||
- The value of a determinant is unchanged by adding to any row a constant multiple of another row,
|
||||
or adding to any column a constant multiple of another column
|
||||
|
||||
- If $A$ and $B$ are square matrices of the same order then
|
||||
|
||||
$$\det(AB) = \det A \times \det B $$
|
||||
|
||||
## Inverse of a Matrix
|
||||
|
||||
If $A$ is a square matrix, then its inverse matrix is $A^{-1}$ and is defined by the property that:
|
||||
|
||||
$$A^{-1}A = AA^{-1} = I$$
|
||||
|
||||
- Not every matrix has an inverse
|
||||
- If the inverse exists, then it is very useful for solving systems of equations:
|
||||
|
||||
\begin{align*}
|
||||
A\pmb{x} = \pmb b \rightarrow A^{-1}A\pmb x &= A^{-1}\pmb b \\
|
||||
I\pmb x &= A^{-1}\pmb b \\
|
||||
\pmb x &= A^{-1}\pmb b
|
||||
\end{align*}
|
||||
|
||||
Therefore there must be a unique solution to $A\pmb x = \pmb b$: $\pmb x = A^{-1}\pmb b$.
|
||||
|
||||
- If $D = EF$ then
|
||||
|
||||
$$D^-1 = (EF)^{-1} = F^{-1}E^{-1}$$
|
||||
|
||||
### Inverse of a 2x2 Matrix
|
||||
|
||||
If $A$ is the $2x2$ matrix
|
||||
|
||||
$$
|
||||
A = \begin{pmatrix}
|
||||
a_{11} & a_{12} \\
|
||||
a_{21} & a_{22}
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
and its determinant, $D$, satisfies $D \ne 0$, $A$ has the inverse $A^{-1}$ given by
|
||||
|
||||
$$
|
||||
A^{-1} = \frac 1 D \begin{pmatrix}
|
||||
a_{22} & -a_{12} \\
|
||||
-a_{21} & a_{11}
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
If $D = 0$, then matrix $A$ has no inverse.
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
Find the inverse of matrix $A = \begin{pmatrix} -1 & 5 \\ 2 & 3 \end{pmatrix}$.
|
||||
|
||||
</summary>
|
||||
|
||||
1. Calculate the determinant
|
||||
|
||||
$$\det A = -1 \times 3 - 5 \times 2 = -13$$
|
||||
|
||||
Since $\det A \ne 0$, the inverse exists.
|
||||
|
||||
2. Calculate $A^{-1}$
|
||||
|
||||
$$ A^{-1} = \frac 1 {-13} \begin{pmatrix} 3 & -5 \\ -2 & -1\end{pmatrix}$$
|
||||
@@ -1,322 +0,0 @@
|
||||
---
|
||||
author: Akbar Rahman
|
||||
date: \today
|
||||
title: MMME1026 // Vectors
|
||||
tags:
|
||||
- uni
|
||||
- nottingham
|
||||
- mechanical
|
||||
- engineering
|
||||
- mmme1026
|
||||
- maths
|
||||
- vectors
|
||||
uuid: ef1669d9-b8c3-4813-8b33-5764a2f57a55
|
||||
---
|
||||
|
||||
Vectors have a *magnitude* (size) and *direction*.
|
||||
Examples of vectors include force, velocity, and acceleration.
|
||||
|
||||
In type, vectors are notated in **bold**: $\pmb{a}$.
|
||||
In handwriting is is \underline{underlined}.
|
||||
|
||||
# Vector Algebra
|
||||
|
||||
## Equality
|
||||
|
||||
Two vectors are said to be equal if their magnitudes and directions are equal.
|
||||
|
||||
You can also do this by checking if their vertical and horizontal components are equal.
|
||||
|
||||
## Addition
|
||||
|
||||
Two vectors, $\pmb{a}$ and $\pmb{b}$, can be summed together by summing their components.
|
||||
|
||||
You can also do this graphically by drawing $\pmb{a}$ and then $\pmb{b}$ by putting its tail on
|
||||
the tip of $\pmb{a}$.
|
||||
The sum of the vectors is from the tail of $\pmb{a}$ to the tip of $\pmb{b}$:
|
||||
|
||||

|
||||
|
||||
Vector addition is associative[^d_associative] and commutative[^d_commutative].
|
||||
|
||||
## Zero Vector
|
||||
|
||||
The *zero vector* is denoted by $\pmb{0}$ and has zero magnitude and arbitrary direction.
|
||||
|
||||
$$\pmb{a} + \pmb 0 = \pmb a$$
|
||||
|
||||
If $\pmb a + \pmb b = 0$ then it is normal to write
|
||||
|
||||
|
||||
$$\pmb b = -\pmb a$$
|
||||
|
||||
$-\pmb a$ is a vector with the same magnitude to $\pmb a$ but opposite direction.
|
||||
|
||||
## Multiplication
|
||||
|
||||
### Multiplication by a Scalar
|
||||
|
||||
Let $k$, an arbitrary scalar and $\pmb a$, an arbitrary vector.
|
||||
|
||||
- $k\pmb a$ is a vector of magnitude $|k|$ times that of $\pmb a$ and is parralel to it
|
||||
- $0\pmb a = 0$
|
||||
- $1\pmb a = a$
|
||||
- $(-k)\pmb a = -(k\pmb a)$
|
||||
- $(-1)\pmb a = -\pmb a$
|
||||
- $k(\pmb a + \pmb b) = k\pmb a + k\pmb b$
|
||||
- $(k_1 + k_2)\pmb a = k_1\pmb a + k_2\pmb a$
|
||||
- $(k_1k_2)\pmb a = k_1(k_2\pmb a)$
|
||||
|
||||
### The Scalar Product (Inner Product, Dot Product)
|
||||
|
||||
The scalar product of two vectors $\pmb a$ and $\pmb b$ is a scalar defined by
|
||||
|
||||
$$\pmb a \cdot \pmb b = |\pmb a||\pmb b|\cos\theta = a_1b_1 + a_2b_2 + a_3b_3$$
|
||||
|
||||
where $\pmb a = (a_1, a_2, a_3)$ and $\pmb b = (b_1, b_2, b_3)$
|
||||
|
||||
where $\theta$ is the angle between the two vectors (note that $\cos\theta = \cos(2\pi - \theta)$).
|
||||
This definition does not depend on a coordinate system.
|
||||
|
||||
- The dot product is commutative[^d_commutative]
|
||||
- The dot product is distributive[^d_distributive]
|
||||
- If $\pmb a$ is perpendicular to $\pmb b$, then $\pmb a \cdot \pmb b = 0$ and they are said to be
|
||||
orthogonal
|
||||
- If $\pmb a \cdot \pmb b = 0$ then either
|
||||
|
||||
i. The vectors are orthogonal
|
||||
ii. One or both of the vectorse are zero vectors
|
||||
|
||||
- $\pmb a \cdot \pmb a = |\pmb a|^2 = a^2$
|
||||
|
||||
The base vectors are said to be *orthonormal* when $\pmb i^2 = \pmb j^2 = \pmb k^2 = 1$ and
|
||||
$i\cdot j = i\cdot k = j\cdot k = 0$.
|
||||
|
||||
### The Vector Product (Cross Product)
|
||||
|
||||
The vector product between two vectors is defined by:
|
||||
|
||||
$$\pmb a \times \pmb b = |\pmb a||\pmb b|\sin\theta \hat{\pmb n}$$
|
||||
|
||||
where $0 \le \theta \le \pi$ is the angle between $\pmb a$ and $\pmb b$ and $\pmb n$ is a unit
|
||||
vector such that the three vectors from a right handed system:
|
||||
|
||||

|
||||
|
||||
- $\pmb a \times \pmb b = -\pmb b \times \pmb a$ (the vector product is anti-commutative[^d_commutative])
|
||||
- If $\pmb a \times \pmb b = 0$ then either
|
||||
|
||||
i. The vectors are parallel
|
||||
ii. One or both of the vectors are a zero vector
|
||||
|
||||
- $(k_1\pmb a)\times(k_2\pmb b) = (k_1k_2)(\pmb a \times \pmb b)$ where $k_1$, $k_2$ are scalars
|
||||
- If $\pmb a = (a_1, a_2, a_3)$ and $\pmb b = (b_1, b_2, b_3)$ then
|
||||
|
||||
$$\pmb a \times \pmb b = (a_2b_3 - a_3b_2, a_1b_3-a_3b_1, a_1b_2-a_2b_1)$$
|
||||
|
||||
- In the notation of determinants, provided we **expand by row 1**:
|
||||
|
||||
$$\pmb a \times \pmb b = \begin{vmatrix} \pmb i & \pmb j & \pmb k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
|
||||
|
||||
This is technically not a determinant because not all the elements are numbers but shhhhhh...
|
||||
|
||||
|
||||
### Scalar Triple Product (and co-planar vectors)
|
||||
|
||||
\begin{align*}
|
||||
[ \pmb a, \pmb b, \pmb c ] &= \pmb a \cdot (\pmb b \times \pmb c) \\
|
||||
&= \pmb b \cdot (\pmb c \times \pmb a) \\
|
||||
&= \pmb c \cdot (\pmb a \times \pmb b) \\
|
||||
&= (\pmb b \times \pmb c) \cdot \pmb a \\
|
||||
&= (\pmb c \times \pmb a) \cdot \pmb b \\
|
||||
&= (\pmb a \times \pmb b) \cdot \pmb c
|
||||
\end{align*}
|
||||
|
||||
In terms of determinants:
|
||||
|
||||
$$
|
||||
[ \pmb a, \pmb b, \pmb c ] = \begin{vmatrix}
|
||||
a_1 & a_2 & a_3 \\
|
||||
b_1 & b_2 & b_3 \\
|
||||
c_1 & c_2 & c_3
|
||||
\end{vmatrix}
|
||||
$$
|
||||
|
||||
If $[\pmb a, \pmb b, \pmb c] = 0$ then the vectors are coplanar.
|
||||
|
||||
The absolute value of the scalar triple product reperesents the volume of the parallelepiped defined
|
||||
by those vectors:
|
||||
|
||||

|
||||
|
||||
|
||||
## The Unit Vector
|
||||
|
||||
$$\hat{\pmb a}= \frac{\pmb a}{|\pmb a|}$$
|
||||
|
||||
## Components of a Vector
|
||||
|
||||
The component of a vector $\pmb a$ in the direction of the **unit vector** $\hat{\pmb n}$ is
|
||||
|
||||
$$\pmb a \cdot \hat{\pmb n}$$
|
||||
|
||||

|
||||
|
||||
Vectors are often written in terms of base vectors, such as the Cartesian system's $\pmb i$,
|
||||
$\pmb j$, and $\pmb k$ in three dimensions.
|
||||
|
||||

|
||||
|
||||
These vectors have unit magnitude, are perpendicular to each other, and are right handed.
|
||||
|
||||
If $\pmb a = a_1\pmb i + a_2\pmb j + a_3\pmb k$ then the scalars $a_1$, $a_2$, and $a_3$ are the
|
||||
*components* of the vector (relative to the base vectors).
|
||||
|
||||
### Vector Projections
|
||||
|
||||
The *vector projection* of $\pmb a$ onto $\hat{\pmb n}$ is given by
|
||||
|
||||
$$(\pmb a \cdot \hat{\pmb n})\hat{\pmb n}$$
|
||||
|
||||

|
||||
|
||||
They look like the same as [vector components](#components-of-a-vector) to me...
|
||||
no idea what the difference is but uh StackExchange says
|
||||
([permalink](https://physics.stackexchange.com/a/537690)):
|
||||
|
||||
> As pointed out, the projection and component actually refers to the same thing.
|
||||
> To solve a problem like this it useful to introduce a coordinate system, as you mentioned yourself
|
||||
> you project onto the x-axis.
|
||||
> As soon as you introduce a coordinate system you can talk about the components of some vector.
|
||||
|
||||
## Position Vectors
|
||||
|
||||
If an origin $O$ is fixed, then any point $P$ in space may be represented by the vector $\pmb r$
|
||||
which has a magnitude and direction given by the line $\overrightarrow{OP}$.
|
||||
|
||||
A point $(x, y, z)$ in Cartesian space has the position vector $r = x\pmb i + y\pmb j + z\pmb k$.
|
||||
|
||||
## Angle Between Vectors
|
||||
|
||||
By rearranging the [dot product equation](#the-scalar-product-inner-product-dot-product) you can get
|
||||
an equation to find the angle, $\theta$, between two vectors:
|
||||
|
||||
$$\cos\theta = \frac{\pmb a \cdot \pmb b}{|\pmb a||\pmb b|} = \frac{a_1b_1 + a_2b_2 + a_3b_3}{|\pmb a ||\pmb b|}$$
|
||||
|
||||
# Applications of Vectors
|
||||
|
||||
## Application of Vectors to Geometry
|
||||
|
||||
### Area of a Parallelogram
|
||||
|
||||
$$area = |\pmb a||\pmb b|\sin\theta = |\pmb a \times \pmb b|$$
|
||||
|
||||
### Volume of a Parallelepiped
|
||||
|
||||
$$volume = | [ \pmb a, \pmb, b, \pmb c ] |$$
|
||||
|
||||
### Equation of a Straight Line
|
||||
|
||||
A straight line can be specified by
|
||||
|
||||
- two points it passes
|
||||
- one point it passes and a direction
|
||||
|
||||
If $\pmb a$ and $\pmb b$ are the position vectors of two distinct points, then the position vectors
|
||||
of an arbitrary point on the line joining these points is:
|
||||
|
||||
$$\pmb r = \pmb a + \lambda(\pmb b - \pmb a)$$
|
||||
|
||||
where $\lambda \in \Re$ is a parameter.
|
||||
|
||||

|
||||
|
||||
Suppose $O$ is an origin and $\pmb a$, $\pmb b$, and $\pmb r$ are position vectors on the line such
|
||||
that
|
||||
|
||||
\begin{align*}
|
||||
\pmb a &= (x_0, y_0, z_0) \\
|
||||
\pmb b &= (x_1, y_1, z_1) \\
|
||||
\pmb r &= (x, y, z)\\
|
||||
\\
|
||||
(x, y, z) &= (x_0, y_0, z_0) + \lambda((x_1, y_1, z_1) - (x_0, y_0, z_0)) \\
|
||||
\\
|
||||
x &= x_0 + \lambda(x_1-x_0) \\
|
||||
y &= y_0 + \lambda(y_1-y_0) \\
|
||||
z &= z_0 + \lambda(z_1-z_0) \\
|
||||
\\
|
||||
\lambda &= \frac{x-x_0}{x_1-x_0} = \frac{y-y_0}{y_1-y_0} = \frac{z-z_0}{z_1-z_0}
|
||||
\end{align*}
|
||||
|
||||
In the above, the vector $\pmb b - \pmb a$ is in the direction of the line.
|
||||
Thus the equation of a line can be specified by giving a point it passes through ($\pmb a$, say) and
|
||||
the direction of the line ($\pmb d = (d_1, d_2, d_3)$, say).
|
||||
|
||||
The vector equation is then
|
||||
|
||||
$$\pmb r = \pmb a + \lambda\pmb d$$
|
||||
|
||||
#### The Cartesian Equation
|
||||
|
||||
$$\frac{x-x_0}{d_1} = \frac{y-y_0}{d_2} = \frac{z-z_0}{d_3}$$
|
||||
|
||||
### Equation of a Plane
|
||||
|
||||
A *plane* can be defined by specifying either:
|
||||
|
||||
- three points (as long as they're not in a straight line)
|
||||
- a point on the plane and two directions (useful for a parametric form)
|
||||
- specifying a point on the plane and the normal vector to the plane
|
||||
|
||||
#### Specifying a Point and a Normal Vector
|
||||
|
||||
Let $\pmb a$ be the position vector of a point on the plane, and $\pmb n$ a normal vector to the
|
||||
plane.
|
||||
|
||||
If $\pmb r$ is the position vector of an arbitrary point on the plane, then $\pmb r - \pmb a$ is a
|
||||
vector lying *in* the plane, so
|
||||
|
||||
$$(\pmb r - \pmb a) \cdot \pmb n = 0$$
|
||||
|
||||
So the *vector equation* of the plane is
|
||||
|
||||
$$\pmb r \cdot \pmb n = \pmb a \cdot \pmb n = D$$
|
||||
|
||||
where $\pmb r = (x, y, z)$ and the vectors $\pmb a$ and $\pmb n$ are known.
|
||||
|
||||
Suppose $\pmb a$, $\pmb n$, and $\pmb r$ are given by
|
||||
|
||||
\begin{align*}
|
||||
\pmb a &= (x_0, y_0, z_0) \\
|
||||
\pmb n &= (l, m, p) \\
|
||||
\pmb r &= (x, y, z)\\
|
||||
\text{then } 0 &= ((x, y, z) - (x_0, y_0, z_0))\cdot(l, m, p)
|
||||
\end{align*}
|
||||
|
||||
#### Specifying Three Points on a Plane
|
||||
|
||||
If we specify three points on a plane with position vectors $\pmb a$, $\pmb b$, and $\pmb c$ the
|
||||
vectors $\pmb c - \pmb a$ and $\pmb c - \pmb b$ lie *in* the plane.
|
||||
(The vectors $\pmb a$, $\pmb b$, and $\pmb c$ do not necessarily lie *in* the plane;
|
||||
rather they take you from $O$ **to** the plane.)
|
||||
|
||||
The normal to the plane, $\pmb n$, is then parallel to
|
||||
|
||||
$$(\pmb c - \pmb a)\times(\pmb c - \pmb b)$$
|
||||
|
||||
and so the equation of the plane is
|
||||
|
||||
$$(\pmb r - \pmb a)\cdot((\pmb c - \pmb a)\times(\pmb c - \pmb b)) = 0$$
|
||||
|
||||
|
||||
#### The Angle Between Two Planes
|
||||
|
||||
... is the same as the angle between their normal vectors
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[^d_associative]: The grouping of elements in in an operation do not matter (e.g. scalar addition: $a+(b+c) = (a+b)+c$)
|
||||
[^d_commutative]: The order of elements in an operation do not matter (e.g. scalar addition: $a+b = b+a$)
|
||||
[^d_distributive]: Easiest to explain with examples. Scalar multiplication is said to be distributive because $(a+b)c = ac + bc$
|
||||