From 1e625bbefe7b799f51f97baf2f7a23cb97cbc827 Mon Sep 17 00:00:00 2001 From: Alvie Rahman Date: Mon, 1 Nov 2021 10:51:46 +0000 Subject: [PATCH] mmme1028 leture l2.1 --- mechanical/mmme1028_statics.md | 128 +++++++++++++++++++++++++++++++++ 1 file changed, 128 insertions(+) diff --git a/mechanical/mmme1028_statics.md b/mechanical/mmme1028_statics.md index 2299ca0..bd1b866 100755 --- a/mechanical/mmme1028_statics.md +++ b/mechanical/mmme1028_statics.md @@ -445,3 +445,131 @@ b. Use the graphical/trigonometric method o check your answer. +# Lecture L2.1 + +## Hooke's Law and Young's Modulus + +Hooke's law states that the extension of an object experiencing a force is proportonal to the force. + +We can generalize this to be more useful creating: + +- Direct stress: + + $$ \sigma = \frac F {A_0} $$ + +- Direct strain: + + $$ \epsilon = \frac {\Delta L}{L_0} $$ + +Using these more generalized variables, Young defined Young's Modulus, $E$, which is a universal +constant of stiffness of a material. + +$$ \sigma = E\epsilon $$ + +
+ + +#### Example 1 + +Calculating Young's Modulus of a Piece of Silicone + + + +\begin{align*} +L_0 &= 4.64 \\ +w_0 &= 0.10 \\ +t_0 &= 150\times10^{-6} \\ +F &= 1.40\times9.81 \\ +L &= 6.33 \\ +w &= 0.086 \\ +t &= 125\times10^{-6} \\ +\\ +\sigma &= \frac F {A_0} = \frac F {w_0t_0} = \frac{1.4\times9.81}{0.1\times150\times10^{-6}} = 915600 \\ +\epsilon &= \frac{\Delta L}{L_0} = \frac{6.33 - 4.64}{4.64} = 0.36422...\\ +E &= \frac \sigma \epsilon = 2513836.686 = 2.5\times10^6 \text{ Pa} +\end{align*} + +
+ +## Stress Strain Curves + +![](./images/vimscrot-2021-11-01T09:50:51,184232288+00:00.png) + +## Poisson's Ration + +For most materiajs, their cross sectionts change when they are stretched or compressed. +This is to keep their volume constant. + +$$ \epsilon_x = \frac {\Delta L}{L_0} $$ +$$ \epsilon_y = \frac {\Delta w}{w_0} $$ +$$ \epsilon_z = \frac {\Delta t}{t_0} $$ + +Poissons' ratio, $\nu$ (the greek letter _nu_, not v), is the ratio of lateral strain to axial +strain: + +$$ \nu = \frac{\epsilon_y}{\epsilon_x} = \frac{\epsilon_z}{\epsilon_x} $$ + +
+ + +#### Example 1 + +Measuring Poisson's Ratio + + + +\begin{align*} +L_0 &= 4.64 \\ +w_0 &= 0.10 \\ +t_0 &= 150\times10^{-6} \\ +\\ +L &= 6.33 \\ +w &= 0.086 \\ +t &= 125\times10^{-6} \\ +\\ +\epsilon_x &= \frac {\Delta L}{L_0} = 0.364 \\ +\epsilon_y &= \frac {\Delta w}{w_0} = -0.14 \\ +\epsilon_z &= \frac {\Delta t}{t_0} = -0.167 \\ +\\ +\nu_y &= \frac{\epsilon_y}{\epsilon_x} = \frac{-0.14}{0.364} = -0.38 \\ +\nu_z &= \frac{\epsilon_z}{\epsilon_x} = \frac{-0.167}{0.364} = -0.46 \\ +\end{align*} + +It's supposed to be that $\nu_y = \nu_z$ but I guess it's close enough right? lol + +
+ +## Typical Values of Young's Modulus and Poisson's Ratio + +Material | Young's Modulus / GPa | Poisson's Ratio +-------- | --------------------- | --------------- +Steel | 210 | 0.29 +Aluminum | 69 | 0.34 +Concrete | 14 | 0.1 +Nylon | 3 | 0.4 +Rubber | 0.01 | 0.495 + +## Direct Stresses and Shear Stresses + +![](./images/vimscrot-2021-11-01T10:35:47,339443980+00:00.png) + +- A direct stress acts normal to the surface +- A shear stress acts tangential to the surface + +Shear stress is defined in the same way as direct stress but given the symbol $tau$ (tau): + +$$ \tau = \frac F A $$ + +Shear strain is defined as the shear angle $\gamma$: + +$$ \gamma \approx \tan\gamma = {\frac x {L_0}} $$ + +The shear modulus, $G$, is like Young's Modulus but for shear forces: + +$$ \tau = G\gamma $$ + +## Relationship between Young's Modulus and Shear Modulus + +$$ G = \frac E {2(1+\nu)} $$ + +$G \approx \frac E 3$ is a good approximation in a lot of engineering cases