Use details/summary tag for examples
This commit is contained in:
parent
0deb97de3b
commit
32199c7b2c
@ -146,15 +146,23 @@ $$e^{i\theta} = \cos\theta + i\sin\theta$$
|
|||||||
|
|
||||||
**Note**: $$\bar z = r\cos\theta - ir\sin\theta = re^{-i\theta}$$
|
**Note**: $$\bar z = r\cos\theta - ir\sin\theta = re^{-i\theta}$$
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
### Example 1
|
### Example 1
|
||||||
|
|
||||||
Write $z = -1 + i$ in exponential form
|
Write $z = -1 + i$ in exponential form
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
> $\arg z = \frac {3\pi} 4$
|
> $\arg z = \frac {3\pi} 4$
|
||||||
> $|z| = \sqrt 2$
|
> $|z| = \sqrt 2$
|
||||||
>
|
>
|
||||||
> So $z = \sqrt2e^{i\frac{3\pi} 4}$
|
> So $z = \sqrt2e^{i\frac{3\pi} 4}$
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
### Example 2
|
### Example 2
|
||||||
|
|
||||||
The equations for a mechanical vibration problem are found to have the following mathematical
|
The equations for a mechanical vibration problem are found to have the following mathematical
|
||||||
@ -162,6 +170,8 @@ solution:
|
|||||||
|
|
||||||
$$z(t) = \frac{e^{i\omega t}}{\omega_0^2-\omega^2 + i\gamma}$$
|
$$z(t) = \frac{e^{i\omega t}}{\omega_0^2-\omega^2 + i\gamma}$$
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
where $t$ represents time and $\omega$, $\omega_0$ and $\gamma$ are all positive real physical
|
where $t$ represents time and $\omega$, $\omega_0$ and $\gamma$ are all positive real physical
|
||||||
constants.
|
constants.
|
||||||
Although $z(t)$
|
Although $z(t)$
|
||||||
@ -200,6 +210,8 @@ b. Hence find the constants $b$ and $\varphi$ such that
|
|||||||
y(t) &= \frac 1 a \sin(\omega t - \delta) \\
|
y(t) &= \frac 1 a \sin(\omega t - \delta) \\
|
||||||
> \end{align*}
|
> \end{align*}
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
## Products of Complex Numbers
|
## Products of Complex Numbers
|
||||||
|
|
||||||
Suppose we have 2 complex numbers:
|
Suppose we have 2 complex numbers:
|
||||||
@ -243,10 +255,14 @@ r^n(\cos\theta +i\sin\theta)^n &= r^n(\cos{n\theta} + i\sin{n\theta}) \\
|
|||||||
(\cos\theta +i\sin\theta)^n &= (\cos{n\theta} + i\sin{n\theta})
|
(\cos\theta +i\sin\theta)^n &= (\cos{n\theta} + i\sin{n\theta})
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
### Example 1
|
### Example 1
|
||||||
|
|
||||||
Write $1+i$ in polar form and use de Moivre's theorem to calculate $(1+i)^{15}$.
|
Write $1+i$ in polar form and use de Moivre's theorem to calculate $(1+i)^{15}$.
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
> \begin{align*}
|
> \begin{align*}
|
||||||
r &= |1+i| = \sqrt2 \\
|
r &= |1+i| = \sqrt2 \\
|
||||||
\theta &= \arg{1+i} = \frac \pi 4 \\
|
\theta &= \arg{1+i} = \frac \pi 4 \\
|
||||||
@ -258,7 +274,10 @@ Write $1+i$ in polar form and use de Moivre's theorem to calculate $(1+i)^{15}$.
|
|||||||
&= 2^7 (1 - i) \\
|
&= 2^7 (1 - i) \\
|
||||||
&= 128 - 128i
|
&= 128 - 128i
|
||||||
> \end{align*}
|
> \end{align*}
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
### Example 2
|
### Example 2
|
||||||
|
|
||||||
Use de Moivre's theorem to show that
|
Use de Moivre's theorem to show that
|
||||||
@ -269,6 +288,8 @@ Use de Moivre's theorem to show that
|
|||||||
\sin{2\theta} &= 2\sin\theta\cos\theta
|
\sin{2\theta} &= 2\sin\theta\cos\theta
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
> Let $n=2$:
|
> Let $n=2$:
|
||||||
|
|
||||||
> \begin{align*}
|
> \begin{align*}
|
||||||
@ -277,11 +298,17 @@ Use de Moivre's theorem to show that
|
|||||||
\text{Imaginary part: } 2\sin\theta\cos\theta &= \sin{2\theta}
|
\text{Imaginary part: } 2\sin\theta\cos\theta &= \sin{2\theta}
|
||||||
> \end{align*}
|
> \end{align*}
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
### Example 3
|
### Example 3
|
||||||
|
|
||||||
Given that $n \in \mathbb{N}$ and $\omega = -1 + i$, show that
|
Given that $n \in \mathbb{N}$ and $\omega = -1 + i$, show that
|
||||||
$w^n + \bar{w}^n = 2^{\frac n 2 + 1}\cos{\frac{3n\pi} 4}$ with Euler's formula.
|
$w^n + \bar{w}^n = 2^{\frac n 2 + 1}\cos{\frac{3n\pi} 4}$ with Euler's formula.
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
> \begin{align*}
|
> \begin{align*}
|
||||||
r &= \sqrt{2} \\
|
r &= \sqrt{2} \\
|
||||||
\arg \omega = \theta &= \frac 3 4 \pi \\
|
\arg \omega = \theta &= \frac 3 4 \pi \\
|
||||||
@ -292,14 +319,20 @@ $w^n + \bar{w}^n = 2^{\frac n 2 + 1}\cos{\frac{3n\pi} 4}$ with Euler's formula.
|
|||||||
&= 2^{\frac n 2 + 1}\cos{\frac {3n\pi} 4}
|
&= 2^{\frac n 2 + 1}\cos{\frac {3n\pi} 4}
|
||||||
> \end{align*}
|
> \end{align*}
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
## Complex Roots of Polynomials
|
## Complex Roots of Polynomials
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
### Example
|
### Example
|
||||||
|
|
||||||
Which complex numbers $z$ satisfy
|
Find which complex numbers $z$ satisfy
|
||||||
|
|
||||||
$$z^3 = 8i$$
|
$$z^3 = 8i$$
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
> 1. Write $8i$ in exponential form,
|
> 1. Write $8i$ in exponential form,
|
||||||
>
|
>
|
||||||
> $|8i| = 8$ and $\arg{8i} = \frac \pi 2$
|
> $|8i| = 8$ and $\arg{8i} = \frac \pi 2$
|
||||||
@ -342,3 +375,5 @@ $$z^3 = 8i$$
|
|||||||
> Some of these complex roots may be real numbers.
|
> Some of these complex roots may be real numbers.
|
||||||
>
|
>
|
||||||
> 4. There are three solutions
|
> 4. There are three solutions
|
||||||
|
|
||||||
|
</details>
|
||||||
|
Loading…
Reference in New Issue
Block a user