diff --git a/uni/mmme/1026_maths_for_engineering/images/vimscrot-2022-02-18T20:34:50,128465689+00:00.png b/uni/mmme/1026_maths_for_engineering/images/vimscrot-2022-02-18T20:34:50,128465689+00:00.png index 4caf7c0..74ddbc9 100644 Binary files a/uni/mmme/1026_maths_for_engineering/images/vimscrot-2022-02-18T20:34:50,128465689+00:00.png and b/uni/mmme/1026_maths_for_engineering/images/vimscrot-2022-02-18T20:34:50,128465689+00:00.png differ diff --git a/uni/mmme/1026_maths_for_engineering/images/vimscrot-2022-02-18T21:40:15,724449945+00:00.png b/uni/mmme/1026_maths_for_engineering/images/vimscrot-2022-02-18T21:40:15,724449945+00:00.png index 6450392..907a49f 100644 Binary files a/uni/mmme/1026_maths_for_engineering/images/vimscrot-2022-02-18T21:40:15,724449945+00:00.png and b/uni/mmme/1026_maths_for_engineering/images/vimscrot-2022-02-18T21:40:15,724449945+00:00.png differ diff --git a/uni/mmme/1026_maths_for_engineering/vectors.md b/uni/mmme/1026_maths_for_engineering/vectors.md index 76aa464..a9a71fe 100755 --- a/uni/mmme/1026_maths_for_engineering/vectors.md +++ b/uni/mmme/1026_maths_for_engineering/vectors.md @@ -96,18 +96,19 @@ $i\cdot j = i\cdot k = j\cdot k = 0$. The vector product between two vectors is defined by: -$$\pmb a \times \pmb b = |\pmb a||\pmb b|\sin\theta \pmb n$$ +$$\pmb a \times \pmb b = |\pmb a||\pmb b|\sin\theta \hat{\pmb n}$$ where $0 \le \theta \le \pi$ is the angle between $\pmb a$ and $\pmb b$ and $\pmb n$ is a unit vector such that the three vectors from a right handed system: ![](./images/vimscrot-2022-02-18T20:11:12,072203286+00:00.png) -- $\pmb a \times \pmb b = -\pmb b \times \pmb a$ (the vector product is non-commutative[^d_commutative]) +- $\pmb a \times \pmb b = -\pmb b \times \pmb a$ (the vector product is anti-commutative[^d_commutative]) - If $\pmb a \times \pmb b = 0$ then either - i. The vectors are parralel + i. The vectors are parallel ii. One or both of the vectors are a zero vector + - $(k_1\pmb a)\times(k_2\pmb b) = (k_1k_2)(\pmb a \times \pmb b)$ where $k_1$, $k_2$ are scalars - If $\pmb a = (a_1, a_2, a_3)$ and $\pmb b = (b_1, b_2, b_3)$ then @@ -151,13 +152,13 @@ by those vectors: ## The Unit Vector -$$\hat a = \frac{a}{|a|}$$ +$$\hat{\pmb a}= \frac{\pmb a}{|\pmb a|}$$ ## Components of a Vector -The component of a vector $\pmb a$ in the direction of the unit vector $\pmb n$ is +The component of a vector $\pmb a$ in the direction of the **unit vector** $\hat{\pmb n}$ is -$$\pmb a \cdot \pmb n$$ +$$\pmb a \cdot \hat{\pmb n}$$ ![](./images/vimscrot-2022-02-18T20:34:50,128465689+00:00.png) @@ -173,9 +174,9 @@ If $\pmb a = a_1\pmb i + a_2\pmb j + a_3\pmb k$ then the scalars $a_1$, $a_2$, a ### Vector Projections -The *vector projection* of $\pmb a$ onto $\pmb n$ is given by +The *vector projection* of $\pmb a$ onto $\hat{\pmb n}$ is given by -$$(\pmb a \cdot \pmb n)\pmb n$$ +$$(\pmb a \cdot \hat{\pmb n})\hat{\pmb n}$$ ![](./images/vimscrot-2022-02-18T21:40:15,724449945+00:00.png) @@ -206,6 +207,10 @@ $$\cos\theta = \frac{\pmb a \cdot \pmb b}{|\pmb a||\pmb b|} = \frac{a_1b_1 + a_2 ## Application of Vectors to Geometry +### Area of a Parallelogram + +$$area = |\pmb a||\pmb b|\sin\theta = |\pmb a \times \pmb b|$$ + ### Equation of a Straight Line A straight line can be specified by @@ -271,7 +276,7 @@ $$(\pmb r - \pmb a) \cdot \pmb n = 0$$ So the *vector equation* of the plane is -$$\pmb r \cdot \pmb n = \pmb a \cdot \pmb n = \pmb d$$ +$$\pmb r \cdot \pmb n = \pmb a \cdot \pmb n = D$$ where $\pmb r = (x, y, z)$ and the vectors $\pmb a$ and $\pmb n$ are known. @@ -280,7 +285,7 @@ Suppose $\pmb a$, $\pmb n$, and $\pmb r$ are given by \begin{align*} \pmb a &= (x_0, y_0, z_0) \\ \pmb n &= (l, m, p) \\ -\pmb n &= (x, y, z)\\ +\pmb r &= (x, y, z)\\ \text{then } 0 &= ((x, y, z) - (x_0, y_0, z_0))\cdot(l, m, p) \end{align*}