mmme2044 notes on shaft design
After Width: | Height: | Size: 10 KiB |
After Width: | Height: | Size: 12 KiB |
After Width: | Height: | Size: 14 KiB |
After Width: | Height: | Size: 13 KiB |
After Width: | Height: | Size: 18 KiB |
After Width: | Height: | Size: 38 KiB |
After Width: | Height: | Size: 158 KiB |
After Width: | Height: | Size: 47 KiB |
After Width: | Height: | Size: 30 KiB |
After Width: | Height: | Size: 293 KiB |
After Width: | Height: | Size: 305 KiB |
After Width: | Height: | Size: 31 KiB |
After Width: | Height: | Size: 24 KiB |
After Width: | Height: | Size: 29 KiB |
After Width: | Height: | Size: 138 KiB |
After Width: | Height: | Size: 962 B |
After Width: | Height: | Size: 51 KiB |
After Width: | Height: | Size: 55 KiB |
After Width: | Height: | Size: 29 KiB |
After Width: | Height: | Size: 45 KiB |
After Width: | Height: | Size: 38 KiB |
After Width: | Height: | Size: 25 KiB |
After Width: | Height: | Size: 32 KiB |
After Width: | Height: | Size: 9.8 KiB |
After Width: | Height: | Size: 34 KiB |
After Width: | Height: | Size: 42 KiB |
After Width: | Height: | Size: 90 KiB |
After Width: | Height: | Size: 31 KiB |
After Width: | Height: | Size: 46 KiB |
After Width: | Height: | Size: 150 KiB |
After Width: | Height: | Size: 78 KiB |
After Width: | Height: | Size: 310 KiB |
After Width: | Height: | Size: 128 KiB |
After Width: | Height: | Size: 28 KiB |
After Width: | Height: | Size: 185 KiB |
After Width: | Height: | Size: 197 KiB |
235
uni/mmme/2xxx/2044_design_manufacture_and_project/shaft_design.md
Executable file
@ -0,0 +1,235 @@
|
|||||||
|
---
|
||||||
|
author: Akbar Rahman
|
||||||
|
date: \today
|
||||||
|
title: MMME2044 // Shaft Design
|
||||||
|
tags: [ mmme2044, shafts, uni ]
|
||||||
|
uuid: 8e0928a6-c20c-4f80-9691-beb2defa4022
|
||||||
|
---
|
||||||
|
|
||||||
|
# Shaft Design Considerations
|
||||||
|
|
||||||
|
- Function and loading
|
||||||
|
- Size and connection to components
|
||||||
|
- Material selection and treatments
|
||||||
|
- Deflection and rigidity
|
||||||
|
- Stress and strength
|
||||||
|
- Critical speed
|
||||||
|
- Manufacturing constraints
|
||||||
|
|
||||||
|
# Shaft-Hub Connections
|
||||||
|
|
||||||
|
![](./images/vimscrot-2022-10-31T15:09:11,091932569+00:00.png)
|
||||||
|
|
||||||
|
![](./images/vimscrot-2022-10-31T15:10:02,106108248+00:00.png)
|
||||||
|
|
||||||
|
# Shaft-Shaft Connections
|
||||||
|
|
||||||
|
Shaft-shaft connections can use either rigid or flexible couplings.
|
||||||
|
|
||||||
|
![](./images/vimscrot-2022-10-31T15:11:05,058803741+00:00.png)
|
||||||
|
|
||||||
|
# Location of Bearing on Shaft
|
||||||
|
|
||||||
|
![](./images/vimscrot-2022-10-31T15:18:36,571125403+00:00.png)
|
||||||
|
|
||||||
|
# Shaft Loading
|
||||||
|
|
||||||
|
- Axial stresses
|
||||||
|
|
||||||
|
- cause by self-weight in vertical shafts
|
||||||
|
- due to axial restraint at bearings and associated axial load
|
||||||
|
|
||||||
|
- bending stress
|
||||||
|
|
||||||
|
- due to bending moment in belt drivers, gear forces, mounted component weights
|
||||||
|
- dynamic forces which can load to fatigue and resonance
|
||||||
|
|
||||||
|
- shear stresses
|
||||||
|
|
||||||
|
- due to torque load/direct shear
|
||||||
|
|
||||||
|
# Shaft Diameter (ASME Design Code)
|
||||||
|
|
||||||
|
$$d = \left[
|
||||||
|
\frac{32n_s}{\pi}
|
||||||
|
\sqrt{
|
||||||
|
\left(\frac{M}{\sigma_e}\right)^2
|
||||||
|
+ \frac34 \left(\frac{T}{\sigma_y}\right)^2
|
||||||
|
}
|
||||||
|
\right]^{\frac13}
|
||||||
|
$$
|
||||||
|
|
||||||
|
where:
|
||||||
|
|
||||||
|
- $n_s$ is [safety factor](#safety-factor)
|
||||||
|
- $M$ is max bending moment (Nm)
|
||||||
|
- $T$ is max torque (Nm)
|
||||||
|
- $\sigma_e$ is endurance limit stress (Pa)
|
||||||
|
- $\sigma_y$ is yield strength of shaft (Pa)
|
||||||
|
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
#### ASME Design Code Derivation
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
- Bending moment creates alternating tensile/compressive stresses ($\sigma_a$):
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
\sigma &= \frac{My}{I} \\
|
||||||
|
I &= \frac{\pi d^4}{64}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
Combine to get:
|
||||||
|
|
||||||
|
$$\sigma_a = \frac{32M}{\pi d^3}$$
|
||||||
|
|
||||||
|
- Torque normally generates constant shear stress ($\tau_m$):
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
\tau &= \frac{TR}{J} \\
|
||||||
|
J &= \frac{\pi d^4}{32}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
Combine to get:
|
||||||
|
|
||||||
|
$$\rightarrow \tau_m = \frac{16T}{\pi d^3}$$
|
||||||
|
|
||||||
|
- von Mises stress in plane stress condition:
|
||||||
|
|
||||||
|
$$\sigma_\text{von Mises} = (\sigma^2 + 3\tau^2)^{\frac12}$$
|
||||||
|
|
||||||
|
- ASME Fatigue Failure Criterion
|
||||||
|
|
||||||
|
$$\left(\frac{n_s\sigma_a}{\sigma_e}\right)^2 + \left(\frac{n_s\sigma_m}{\sigma_Y}\right)^2 = 1$$
|
||||||
|
|
||||||
|
Finally substitute $\sigma_a$ and $\tau_m$ to make $d$ the subject.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## Endurance Limit Stress, $\sigma_e$
|
||||||
|
|
||||||
|
$\sigma_e$ is the level of stress with which fatigue failure wouldn't occur in cycling or
|
||||||
|
alternating load conditions:
|
||||||
|
|
||||||
|
![](./images/vimscrot-2022-11-04T10:13:44,527741950+00:00.png)
|
||||||
|
|
||||||
|
- $\sigma$ at failure decreases with the number of cycles up until a certain point ($\sigma_e$ after
|
||||||
|
around $10^6$ cycles)
|
||||||
|
- if you never exceed this point then the material will last for "infinite" cycles
|
||||||
|
- most steels have this fatigue behaviour so they are often used for shafts
|
||||||
|
|
||||||
|
Time for a silly equation:
|
||||||
|
|
||||||
|
$$\sigma_e = k_ak_bk_ck_dk_ek_fk_g\sigma_e'$$
|
||||||
|
|
||||||
|
where:
|
||||||
|
|
||||||
|
- $k_a$ --- surface factor
|
||||||
|
- $k_b$ --- size factor
|
||||||
|
- $k_c$ --- reliability factor
|
||||||
|
- $k_d$ --- temperature factor
|
||||||
|
- $k_e$ --- duty cycle factor
|
||||||
|
- $k_f$ --- fatigue stress concentration factor
|
||||||
|
- $k_g$ --- miscellaneous effects factor
|
||||||
|
- $\sigma_e'$ --- endurance limit of test specimen
|
||||||
|
|
||||||
|
this is a joke of an equation
|
||||||
|
|
||||||
|
## Reducing Stress Concentrations
|
||||||
|
|
||||||
|
![](./images/vimscrot-2022-11-04T10:31:41,364654063+00:00.png)
|
||||||
|
|
||||||
|
![](./images/vimscrot-2022-11-04T10:31:50,672814681+00:00.png)
|
||||||
|
|
||||||
|
## Critical Speed of Shaft (Natural Frequency)
|
||||||
|
|
||||||
|
- operational speed of shat should be half the critical speed
|
||||||
|
- Centre of Mass should be on the Centre of Rotation
|
||||||
|
- in practice this is not the case
|
||||||
|
- this imbalance causes a deflection (due to centrifugal force, $mr\omega^2$
|
||||||
|
- the critical speed (or natural frequency) is the speed at which the shaft is unstable
|
||||||
|
|
||||||
|
when this is the case it may cause damage to the shaft, bearings, and other destructive
|
||||||
|
vibrations
|
||||||
|
|
||||||
|
## Critical Speed Equation
|
||||||
|
|
||||||
|
$$\omega_c = \sqrt\frac{g}{\delta_\text{st}}$$
|
||||||
|
|
||||||
|
where $g$ is acceleration due to gravity and $\delta_\text{st}$ is
|
||||||
|
[static deflection](#shaft-deflection) of the shaft.
|
||||||
|
|
||||||
|
## Rayleigh Ritz Equation
|
||||||
|
|
||||||
|
When you have multiple masses the Rayleigh-Ritz equation may be more suitable:
|
||||||
|
|
||||||
|
$$\omega_c = \sqrt{g\frac{\Sigma w_i\delta_i}{\Sigma w_i\delta_i^2}} $$
|
||||||
|
|
||||||
|
where $w_i$ is the weight of node $i$ and $\delta_i$ is the static deflection at node $i$.
|
||||||
|
|
||||||
|
# Shaft Deflection
|
||||||
|
|
||||||
|
- Shaft deflection is required to determine the critical speed.
|
||||||
|
- Macaulay's method for the deflection in beam bending:
|
||||||
|
|
||||||
|
$$\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{M}{EI}$$
|
||||||
|
$$y = \int^x_0\int^x_0\left(\frac{M}{EI}\right) \mathrm{d}x + C_1x + C_2$$
|
||||||
|
|
||||||
|
## Shaft Deflection Equations
|
||||||
|
|
||||||
|
![](./images/shaft-design-064.jpg)
|
||||||
|
|
||||||
|
- Maximum deflection:
|
||||||
|
|
||||||
|
$$\delta_\text{max} = \frac{PL^3}{3EI}$$
|
||||||
|
|
||||||
|
- Deflection at any point $x$
|
||||||
|
|
||||||
|
$$\delta = \frac{Px^3}{6EI}(3L-x)$$
|
||||||
|
|
||||||
|
![](./images/shaft-design-065.jpg)
|
||||||
|
|
||||||
|
- Maximum deflection:
|
||||||
|
|
||||||
|
$$\delta_\text{max} = \frac{PL^3}{48EI}$$
|
||||||
|
|
||||||
|
- Deflection at any point:
|
||||||
|
|
||||||
|
$$\delta = \frac{Px}{12EI} \left(\frac{3L^2}{4} - x^2 \right)$$
|
||||||
|
|
||||||
|
![](./images/shaft-design-066.jpg)
|
||||||
|
|
||||||
|
|
||||||
|
- Maximum deflection
|
||||||
|
|
||||||
|
$$\delta_\text{max} = \frac{Pb^2L}{3EI}$$
|
||||||
|
|
||||||
|
- Deflection at any point
|
||||||
|
|
||||||
|
- For $0 \le x \le a$:
|
||||||
|
|
||||||
|
$$\delta = \frac{Pbx}{6aEI}(x^2-a^2)$$
|
||||||
|
|
||||||
|
- For $0 \le z \le b$:
|
||||||
|
|
||||||
|
$$\delta = \frac{Pbx}{6aEI}\left(z^3 - b(2L+b) + 2b^2L\right)$$
|
||||||
|
|
||||||
|
# Safety Factor
|
||||||
|
|
||||||
|
Safety Factor (also known as reserve factor) is a simple way to accommodate for uncertainties in
|
||||||
|
design.
|
||||||
|
|
||||||
|
Simply multiply the maximum stresses and loads you expect by the safety factor, $n_s$, and assume
|
||||||
|
that as your maximum stress and load.
|
||||||
|
|
||||||
|
$n_s$ | Operational conditions and use of materials
|
||||||
|
----- | -------------------------------------------
|
||||||
|
1.25-1.50 | Reliable materials under controlled conditions, known stresses with certainty
|
||||||
|
1.50-2.00 | Well-known materials under reasonably constant environmental condition, known stresses
|
||||||
|
2.00-2.50 | Average materials subjected to known loads and stresses and environment (LSE)
|
||||||
|
2.50-3.00 | Lesser well-known materials under average conditions LSE
|
||||||
|
3.00-3.40 | Untried materials under average conditions of stresses and environment, or well known materials under uncertain LSE
|