Add notes for mmme1048 fluid mechanics
This commit is contained in:
parent
cef6909f68
commit
465b113839
Binary file not shown.
After Width: | Height: | Size: 64 KiB |
153
mechanical/mmme1048_fluid_mechanics.md
Executable file
153
mechanical/mmme1048_fluid_mechanics.md
Executable file
@ -0,0 +1,153 @@
|
|||||||
|
---
|
||||||
|
author: Alvie Rahman
|
||||||
|
date: \today
|
||||||
|
title: MMME1048 // Fluid Mechanics
|
||||||
|
tags: [ uni, nottingham, mechanical, engineering, fluid_mechanics ]
|
||||||
|
---
|
||||||
|
|
||||||
|
# Lecture 1 // Properties of Fluids (2021-10-06)
|
||||||
|
|
||||||
|
## What is a Fluid?
|
||||||
|
|
||||||
|
- A fluid may be liquid, vapor, or gas
|
||||||
|
- No permanent shape
|
||||||
|
- Consists of atoms in random motion and continual collision
|
||||||
|
- Easy to deform
|
||||||
|
- Liquids have fixed volume, gasses fill up container
|
||||||
|
- **A fluid is a substance for wich a shear stress tends to produce unlimited, continuous
|
||||||
|
deformation**
|
||||||
|
|
||||||
|
## Shear Forces
|
||||||
|
|
||||||
|
- For a solid, application of shear stress causes a deformation which, if not too great (elastic),
|
||||||
|
is not permanent and solid regains original positon
|
||||||
|
- For a fluid, continuious deformation takes place as the molecules slide over each other until the
|
||||||
|
force is removed
|
||||||
|
- **A fluid is a substance for wich a shear stress tends to produce unlimited, continuous
|
||||||
|
deformation**
|
||||||
|
|
||||||
|
## Density
|
||||||
|
|
||||||
|
- Density: $$ \rho = \frac m V $$
|
||||||
|
- Specific Density: $$ v = \frac 1 \rho $$
|
||||||
|
|
||||||
|
### Obtaining Density
|
||||||
|
|
||||||
|
- Find mass of a given volume or volume of a given mass
|
||||||
|
- This gives average density and assumes density is the same throughout
|
||||||
|
|
||||||
|
- This is not always the case (like in chocolate chip ice cream)
|
||||||
|
- Bulk density is often used to refer to average density
|
||||||
|
|
||||||
|
### Engineering Density
|
||||||
|
|
||||||
|
- Matter is not continuous on molecular scale
|
||||||
|
- For fluids in constant motion, we take a time average
|
||||||
|
- For most practical purposes, matter is considered to be homogenous and time averaged
|
||||||
|
|
||||||
|
## Pressure
|
||||||
|
|
||||||
|
- Pressure is a scalar quantity
|
||||||
|
- Gases cannot sustain tensile stress, liquids a negligible amount
|
||||||
|
|
||||||
|
- There is a certain amount of energy associated with the random continuous motion of the molecules
|
||||||
|
- Higher pressure fluids tend to have more energy in their molecules
|
||||||
|
|
||||||
|
### How Does Molecular Motion Create Force?
|
||||||
|
|
||||||
|
- When molecules interact with each other, there is no net force
|
||||||
|
- When they interact with walls, there is a resultant force perpendicular to the surface
|
||||||
|
- Pressure caused my molecule: $$ p = \frac {\delta{}F}{\delta{}A} $$
|
||||||
|
- If we want total force, we have to add them all up
|
||||||
|
- $$ F = \int \mathrm{d}F = \int p\, \mathrm{d}A $$
|
||||||
|
|
||||||
|
- If pressure is constant, then this integrates to $$ F = pA $$
|
||||||
|
- These equations can be used if pressure is constant of average value is appropriate
|
||||||
|
- For many cases in fluids pressure is not constant
|
||||||
|
|
||||||
|
### Pressure Variation in a Static Fluid
|
||||||
|
|
||||||
|
- A fluid at rest has constant pressure horizontally
|
||||||
|
- That's why liquid surfaces are flat
|
||||||
|
- But fluids at rest do have a vertical gradient, where lower parts have higher presure
|
||||||
|
|
||||||
|
### How Does Pressure Vary with Depth?
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
Let fluid pressure be p at height z, and p + $\delta$p at z + $\delta$z.
|
||||||
|
|
||||||
|
Force $F_z$, due to pressure $p$, acts upwards to support the fluid.
|
||||||
|
|
||||||
|
Force $F_z + \delta F_z$, due to pressure $p + \delta p$, acts downwards due to weight of fluid
|
||||||
|
above.
|
||||||
|
|
||||||
|
Now:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
F_z &= p\delta x\delta y \\
|
||||||
|
F_z + \delta F_z &= (p + \delta p) \delta x \delta y \\
|
||||||
|
\therefore \delta F_z &= \delta p(\delta x\delta y)
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Resolving forces in z direction:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
F_z - (F_z + \delta F_z) - g\delta m &= 0 \\
|
||||||
|
\text{but } \delta m &= \rho\delta x\delta y\delta z \\
|
||||||
|
\therefore -\delta p(\delta x\delta y) &= g\rho(\delta x\delta y\delta z) \\
|
||||||
|
\text{or } \frac{\delta p}{\delta z} &= -\rho g \\
|
||||||
|
\text{as } \delta z \rightarrow 0,\, \frac{\delta p}{\delta z} &\rightarrow \frac{dp}{dz}\\
|
||||||
|
\therefore \frac{dp}{dz} &= -\rho g\\
|
||||||
|
\Delta p &= \rho g\Delta z
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
The equation applies for any fluid.
|
||||||
|
The -ve sign indicates that as z, height, increases, p, pressure, decreases.
|
||||||
|
|
||||||
|
### Absolute and Gauge Pressure
|
||||||
|
|
||||||
|
- Absolute Pressure is measured relative to zero (a vacuum)
|
||||||
|
- Guage pressure = absolute pressure - atmospheric pressure
|
||||||
|
|
||||||
|
- Often used in industry
|
||||||
|
|
||||||
|
- If abs. pressure = 3 bar and atmospheric pressure is 1 bar, then gauge pressure = 2 bar
|
||||||
|
- Atmospheric pressure changes with altitude
|
||||||
|
|
||||||
|
## Compressibility
|
||||||
|
|
||||||
|
- All fluids are compressible, especially gasses
|
||||||
|
- Most liquids can be considered **incompressible** most of the time (and will be in MMME1048, but
|
||||||
|
may not be in future modules)
|
||||||
|
|
||||||
|
## Surface Tension
|
||||||
|
|
||||||
|
- In a liquid, molecules are held together by molecular attraction
|
||||||
|
- At a boundry between two fluids this creates "surface tension"
|
||||||
|
- Surface tension usually has the symbol $$\gamma$$
|
||||||
|
|
||||||
|
## Ideal Gas
|
||||||
|
|
||||||
|
- No real gas is perfect, although many are similar
|
||||||
|
- We define a specific gas constant to allow us to analyse the behaviour of a specific gas:
|
||||||
|
|
||||||
|
$$ R = \frac {\tilde R}{\tilde m} $$
|
||||||
|
|
||||||
|
(Universal Gas Constant / molar mass of gas)
|
||||||
|
|
||||||
|
- Perfect gas law
|
||||||
|
|
||||||
|
$$pV=mRT$$
|
||||||
|
|
||||||
|
or
|
||||||
|
|
||||||
|
$$ p = \rho RT$$
|
||||||
|
|
||||||
|
- Pressure always in Pa
|
||||||
|
- Temperature always in K
|
||||||
|
|
||||||
|
## Units and Dimentional Analysis
|
||||||
|
|
||||||
|
- It is usually better to use SI units
|
||||||
|
- If in doubt, DA can be useful to check that your answer makes sense
|
Loading…
x
Reference in New Issue
Block a user