notes on strain energy
This commit is contained in:
parent
998a08633e
commit
468b4a22cd
Binary file not shown.
After Width: | Height: | Size: 7.9 KiB |
Binary file not shown.
After Width: | Height: | Size: 13 KiB |
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
Binary file not shown.
After Width: | Height: | Size: 6.8 KiB |
Binary file not shown.
After Width: | Height: | Size: 4.9 KiB |
Binary file not shown.
After Width: | Height: | Size: 13 KiB |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
111
uni/mmme/2053_mechanics_of_solids/strain_energy.md
Executable file
111
uni/mmme/2053_mechanics_of_solids/strain_energy.md
Executable file
@ -0,0 +1,111 @@
|
|||||||
|
---
|
||||||
|
author: Akbar Rahman
|
||||||
|
date: \today
|
||||||
|
title: MMME2053 // Strain Energy
|
||||||
|
tags: [ strain_energy ]
|
||||||
|
uuid: 9cbe6fab-c733-45d0-b8e7-b3d949b3eeb7
|
||||||
|
lecture_slides: [ ./lecture_slides/MMME2053 SE L1 Slides.pdf, ./lecture_slides/MMME2053 SE L2 Slides.pdf, ./lecture_slides/MMME2053 SE L3 Slides.pdf ]
|
||||||
|
lecture_notes: [ ./lecture_notes/Strain Energy Methods Notes.pdf ]
|
||||||
|
worked_examples: [ ./worked_examples/MMME2053 SE WE Slides.pdf ]
|
||||||
|
exercise_sheets: [ ./exercise_sheets/Strain Energy Methods Exercise Sheet.pdf, ./exercise_sheets/Strain Energy Methods Exercise Sheet Solutions.pdf ]
|
||||||
|
---
|
||||||
|
|
||||||
|
# Strain Energy Definition
|
||||||
|
|
||||||
|
This section refers to the first two slide sets.
|
||||||
|
|
||||||
|
Strain energy in a body is equal to the work done on the body by the applies loads:
|
||||||
|
|
||||||
|
$$U = \int_0^u P\mathrm du$$
|
||||||
|
|
||||||
|
![](./images/vimscrot-2023-02-16T14:19:48,580021845+00:00.png)
|
||||||
|
|
||||||
|
## Bending
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
U = \int_0^\Phi M\mathrm d\Phi = \int^L_0\frac{M^2}{2EI}\delta s
|
||||||
|
\label{eqn:bendingeqn1}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
![](./images/vimscrot-2023-02-16T14:22:41,358964129+00:00.png)
|
||||||
|
|
||||||
|
If this material represents an element of a larger beam of length $L$ and curvature of radius $R$
|
||||||
|
|
||||||
|
![](./images/vimscrot-2023-02-16T14:41:32,526245370+00:00.png)
|
||||||
|
|
||||||
|
The strain energy within this element will be:
|
||||||
|
|
||||||
|
$$\delta U = \frac12 M\delta \Phi$$
|
||||||
|
|
||||||
|
From the elastic beam bending equation we know:
|
||||||
|
|
||||||
|
$$\frac MI = \frac ER$$
|
||||||
|
|
||||||
|
and as the angle subtended by the element is equal to the change in slope, the expression for the
|
||||||
|
arc created by the element is:
|
||||||
|
|
||||||
|
$$\delta s = R\delta \Phi$$
|
||||||
|
|
||||||
|
Eliminating $R$ from the above two equations and rearranging gives
|
||||||
|
|
||||||
|
$$\delta \Phi = \frac{M}{EI}\delta s$$
|
||||||
|
|
||||||
|
This can be substituted into \label{eqn:bendingeqn1} (left and middle) to get
|
||||||
|
|
||||||
|
$$\delta U = \frac{M^2}{2EI}\delta s$$
|
||||||
|
|
||||||
|
Integrate over full length of beam to get total strain energy:
|
||||||
|
|
||||||
|
$$U = \int^L_0\frac{M^2}{2EI}\delta s$$
|
||||||
|
|
||||||
|
## Torsion
|
||||||
|
|
||||||
|
$$U = \int_0^\theta T\mathrm d\theta = \int^L_0 \frac{T^2}{2GJ} \delta s$$
|
||||||
|
|
||||||
|
Derivations for the equation above is analogous to those for bending and axial loads, and can be
|
||||||
|
found in the second lecture slide set (p9-p11).
|
||||||
|
|
||||||
|
![](./images/vimscrot-2023-02-16T14:23:06,415583742+00:00.png)
|
||||||
|
|
||||||
|
## Elastic Axial Loading
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
U = \frac12 Pu = \int^L_0\frac{P^2}{2EA}\delta s
|
||||||
|
\label{eqn:elasticaxialloading1}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
![](./images/vimscrot-2023-02-16T14:26:48,809335151+00:00.png)
|
||||||
|
|
||||||
|
If this material represents an element, of length $\delta s$, of a larger beam of length $L$, and
|
||||||
|
the change in length of this element due to the applied load $P$ is $\delta u$ ten the strain energy
|
||||||
|
within the element is
|
||||||
|
|
||||||
|
$$\delta U = \frac12 P\delta u$$
|
||||||
|
|
||||||
|
|
||||||
|
![](./images/vimscrot-2023-02-16T14:40:43,750030500+00:00.png)
|
||||||
|
|
||||||
|
> Note that there are transverse strains/displacements due to Poisson's effects but there are no
|
||||||
|
> transverse stresses/loads, thus there is no work done in the transverse direction.
|
||||||
|
|
||||||
|
Axial strain is:
|
||||||
|
|
||||||
|
$$\epsilon = \frac{\delta u}{\delta s}$$
|
||||||
|
|
||||||
|
Equating this to Hooke's law yields:
|
||||||
|
|
||||||
|
$$\delta u = \frac{P}{EA}\delta s$$
|
||||||
|
|
||||||
|
which can be substituted into equation \ref{eqn:elasticaxialloading1} (left and middle) to get
|
||||||
|
|
||||||
|
$$\delta U = \frac{P^2}{2EA}\delta s$$
|
||||||
|
|
||||||
|
Integrate over full length of beam to get total strain energy:
|
||||||
|
|
||||||
|
$$U = \int^L_0\frac{P^2}{2EA}\delta s$$
|
||||||
|
|
||||||
|
# Castigliano's Theorem
|
||||||
|
|
||||||
|
This section refers to the third slide set.
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user