begin notes on ac
This commit is contained in:
136
uni/mmme/2051_electromechanical_devices/ac_intro.md
Executable file
136
uni/mmme/2051_electromechanical_devices/ac_intro.md
Executable file
@@ -0,0 +1,136 @@
|
||||
---
|
||||
author: Akbar Rahman
|
||||
date: \today
|
||||
title: MMME2051 // Introduction to Alternating Current (AC)
|
||||
tags: [ alternating_current, ac ]
|
||||
uuid: 0c90c691-cbf8-43e9-bfa5-7b277c853151
|
||||
lecture_slides: [ ./lecture_slides/MMME2051EMD_Lecture2B.pdf, ./lecture_slides/MMME2051EMD_Lecture3A.pdf, ./lecture_slides/MMME2051EMD_Lecture3B.pdf ]
|
||||
---
|
||||
|
||||
This section builds on [complex numbers](/permalink?uuid=b9be8780-1ab7-402f-9c67-8cc74a74f7a9).
|
||||
|
||||
# Sinusoidal Waves
|
||||
|
||||
This module will be using the following format:
|
||||
|
||||
$$y(t) = A\cos(\omega t + \Phi)$$
|
||||
|
||||
where $A$ is amplitude, $\omega$ is frequency, $\omega t + \Phi$ is phase angle, and $\Phi$ is phase
|
||||
offset.
|
||||
|
||||
[Explore the effects of changing the variables in Desmos](https://www.desmos.com/calculator/dmzytwau2y)
|
||||
|
||||
# Phasor
|
||||
|
||||
- a phasor is a complex number that represents the initial position of a rotating vector
|
||||
- use the amplitude ($|V|$) and phase offset ($\Phi$) of a cosine function
|
||||
- for all AC steady state analysis ($\omega$ is constant), these two variables are the only two needed
|
||||
|
||||
#### Example
|
||||
|
||||
For voltage $v$ given by
|
||||
|
||||
$$v = 150 \cos (50t + 25)$$
|
||||
|
||||
it may be represented in the phasor form
|
||||
|
||||
$$150 \angle 25$$
|
||||
|
||||
|
||||
#### Example
|
||||
|
||||
For current $i$ given by
|
||||
|
||||
$$i = 10 \cos \left(50t -\frac{pi}{6}\right)$$
|
||||
|
||||
it may be represented in the phasor form
|
||||
|
||||
$$10 \angle \frac{pi}{6}$$
|
||||
|
||||
## Phasors in Resistive Circuits
|
||||
|
||||
|
||||

|
||||
|
||||
Convert all variables to phasors or to complex form
|
||||
|
||||
|
||||

|
||||
|
||||
Apply KCL, KVL, Ohm's Law
|
||||
|
||||
\begin{align*}
|
||||
v &= iR \\
|
||||
V\angle \Phi = IR \angle\theta \\
|
||||
I \angle \theta = \frac VR \angle \Phi
|
||||
\end{align*}
|
||||
|
||||

|
||||
|
||||
## Phasors in Inductive Circuit
|
||||
|
||||

|
||||
|
||||
Ohm's law generalised to incorporate complex resistance, reactance, $X$:
|
||||
|
||||
\begin{align*}
|
||||
v &= iX \\
|
||||
V\angle\Phi_v &= i\angle\Phi_iX \\
|
||||
&= i\angle\Phi_ij\omega L \\
|
||||
\frac{V}{j\omega L}\angle\Phi_v &= I\angle\Phi_i
|
||||
|
||||
# Power
|
||||
|
||||
## Resistive Circuits
|
||||
|
||||
$$P_\text{avg} = V_\text{rms}I_\text{rms}$$
|
||||
|
||||
## Inductive Circuits
|
||||
|
||||
$$P = \frac{V^2}{2\omega L}\sin{2\omega t}$$
|
||||
|
||||

|
||||
|
||||
## Capacitive Circuits
|
||||
|
||||
$$P = \frac{\omega CV^2}{2}\sin{2\omega t}$$
|
||||
|
||||

|
||||
|
||||
## Real Circuit (Resistive + Reactive)
|
||||
|
||||
$$P = V_\text{RMS}I_\text{RMS}(\cos \gamma + \cos{(2\omega t + \gamma)}$$
|
||||
|
||||
$$P_\text{avg} = V_\text{RMS}I_\text{RMS}\cos \gamma$$
|
||||
|
||||
where $\cos \gamma$ is the power factor (PF) and $\gamma$ is phase deviation between voltage and current.
|
||||
The PF tells us what fraction of the current does useful work.
|
||||
|
||||

|
||||
|
||||
## Apparent, Active, and Reactive Power
|
||||
|
||||
Apparent Power:
|
||||
|
||||
$$S = V_\text{RMS}I_\text{RMS}$$
|
||||
|
||||
- as power still flows losses still occur
|
||||
- AC equipment is rated for apparent power as it handles both used and unused power
|
||||
|
||||
Active Power:
|
||||
|
||||
$$P = S\cos\gamma$$
|
||||
|
||||
- this is the real power transferred to the load
|
||||
|
||||
Reactive Power:
|
||||
|
||||
$$P = S\sin\gamma$$
|
||||
|
||||
A
|
||||
|
||||
# Resonance
|
||||
|
||||
The inductive load of on a circuit is $Z_C = \frac{1}{j\omega L}$.
|
||||
If the frequency of the power supply matches $\omega$, you get resonance and the circuit becomes
|
||||
purely resistive so there is a sharp drop in impedance.
|
||||
Reference in New Issue
Block a user