begin notes on ac
@ -1 +1 @@
|
||||
itags: [ mmme2051 ]
|
||||
itags: [ mmme2051, electronics, electromechanical_devices ]
|
||||
|
136
uni/mmme/2051_electromechanical_devices/ac_intro.md
Executable file
@ -0,0 +1,136 @@
|
||||
---
|
||||
author: Akbar Rahman
|
||||
date: \today
|
||||
title: MMME2051 // Introduction to Alternating Current (AC)
|
||||
tags: [ alternating_current, ac ]
|
||||
uuid: 0c90c691-cbf8-43e9-bfa5-7b277c853151
|
||||
lecture_slides: [ ./lecture_slides/MMME2051EMD_Lecture2B.pdf, ./lecture_slides/MMME2051EMD_Lecture3A.pdf, ./lecture_slides/MMME2051EMD_Lecture3B.pdf ]
|
||||
---
|
||||
|
||||
This section builds on [complex numbers](/permalink?uuid=b9be8780-1ab7-402f-9c67-8cc74a74f7a9).
|
||||
|
||||
# Sinusoidal Waves
|
||||
|
||||
This module will be using the following format:
|
||||
|
||||
$$y(t) = A\cos(\omega t + \Phi)$$
|
||||
|
||||
where $A$ is amplitude, $\omega$ is frequency, $\omega t + \Phi$ is phase angle, and $\Phi$ is phase
|
||||
offset.
|
||||
|
||||
[Explore the effects of changing the variables in Desmos](https://www.desmos.com/calculator/dmzytwau2y)
|
||||
|
||||
# Phasor
|
||||
|
||||
- a phasor is a complex number that represents the initial position of a rotating vector
|
||||
- use the amplitude ($|V|$) and phase offset ($\Phi$) of a cosine function
|
||||
- for all AC steady state analysis ($\omega$ is constant), these two variables are the only two needed
|
||||
|
||||
#### Example
|
||||
|
||||
For voltage $v$ given by
|
||||
|
||||
$$v = 150 \cos (50t + 25)$$
|
||||
|
||||
it may be represented in the phasor form
|
||||
|
||||
$$150 \angle 25$$
|
||||
|
||||
|
||||
#### Example
|
||||
|
||||
For current $i$ given by
|
||||
|
||||
$$i = 10 \cos \left(50t -\frac{pi}{6}\right)$$
|
||||
|
||||
it may be represented in the phasor form
|
||||
|
||||
$$10 \angle \frac{pi}{6}$$
|
||||
|
||||
## Phasors in Resistive Circuits
|
||||
|
||||
|
||||
![](./images/vimscrot-2023-02-09T12:36:34,648080771+00:00.png)
|
||||
|
||||
Convert all variables to phasors or to complex form
|
||||
|
||||
|
||||
![](./images/vimscrot-2023-02-09T12:36:53,528247022+00:00.png)
|
||||
|
||||
Apply KCL, KVL, Ohm's Law
|
||||
|
||||
\begin{align*}
|
||||
v &= iR \\
|
||||
V\angle \Phi = IR \angle\theta \\
|
||||
I \angle \theta = \frac VR \angle \Phi
|
||||
\end{align*}
|
||||
|
||||
![](./images/vimscrot-2023-02-09T12:38:39,149290641+00:00.png)
|
||||
|
||||
## Phasors in Inductive Circuit
|
||||
|
||||
![](./images/vimscrot-2023-02-09T12:39:37,770679143+00:00.png)
|
||||
|
||||
Ohm's law generalised to incorporate complex resistance, reactance, $X$:
|
||||
|
||||
\begin{align*}
|
||||
v &= iX \\
|
||||
V\angle\Phi_v &= i\angle\Phi_iX \\
|
||||
&= i\angle\Phi_ij\omega L \\
|
||||
\frac{V}{j\omega L}\angle\Phi_v &= I\angle\Phi_i
|
||||
|
||||
# Power
|
||||
|
||||
## Resistive Circuits
|
||||
|
||||
$$P_\text{avg} = V_\text{rms}I_\text{rms}$$
|
||||
|
||||
## Inductive Circuits
|
||||
|
||||
$$P = \frac{V^2}{2\omega L}\sin{2\omega t}$$
|
||||
|
||||
![A graph which demonstrates that the average power in an inductive circuit is zero.](./images/vimscrot-2023-02-16T11:33:07,279996793+00:00.png)
|
||||
|
||||
## Capacitive Circuits
|
||||
|
||||
$$P = \frac{\omega CV^2}{2}\sin{2\omega t}$$
|
||||
|
||||
![A graph which demonstrates that the average power in a capacitive circuit is zero.](./images/vimscrot-2023-02-16T11:34:50,165565069+00:00.png)
|
||||
|
||||
## Real Circuit (Resistive + Reactive)
|
||||
|
||||
$$P = V_\text{RMS}I_\text{RMS}(\cos \gamma + \cos{(2\omega t + \gamma)}$$
|
||||
|
||||
$$P_\text{avg} = V_\text{RMS}I_\text{RMS}\cos \gamma$$
|
||||
|
||||
where $\cos \gamma$ is the power factor (PF) and $\gamma$ is phase deviation between voltage and current.
|
||||
The PF tells us what fraction of the current does useful work.
|
||||
|
||||
![A graph which shows power in a real circuit across multiple cycles.](./images/vimscrot-2023-02-16T11:39:18,047002467+00:00.png)
|
||||
|
||||
## Apparent, Active, and Reactive Power
|
||||
|
||||
Apparent Power:
|
||||
|
||||
$$S = V_\text{RMS}I_\text{RMS}$$
|
||||
|
||||
- as power still flows losses still occur
|
||||
- AC equipment is rated for apparent power as it handles both used and unused power
|
||||
|
||||
Active Power:
|
||||
|
||||
$$P = S\cos\gamma$$
|
||||
|
||||
- this is the real power transferred to the load
|
||||
|
||||
Reactive Power:
|
||||
|
||||
$$P = S\sin\gamma$$
|
||||
|
||||
![](./images/vimscrot-2023-02-16T11:49:59,122138825+00:00.png)A
|
||||
|
||||
# Resonance
|
||||
|
||||
The inductive load of on a circuit is $Z_C = \frac{1}{j\omega L}$.
|
||||
If the frequency of the power supply matches $\omega$, you get resonance and the circuit becomes
|
||||
purely resistive so there is a sharp drop in impedance.
|
51
uni/mmme/2051_electromechanical_devices/ac_power.md
Executable file
@ -0,0 +1,51 @@
|
||||
---
|
||||
author: Akbar Rahman
|
||||
date: \today
|
||||
title: MMME2051 // AC Power
|
||||
tags: [ ac, alternating_current, power ]
|
||||
uuid: c269b4b7-7835-4b50-8d4f-ff5bc63a8a3d
|
||||
lecture_slides: [ ./lecture_slides/MMME2051EMD_Lecture3B.pdf ]
|
||||
exercise_sheets: [ ./exercise_sheets/Exercise Sheet 4 - Power factor and three phase.pdf ]
|
||||
---
|
||||
|
||||
# Definitions
|
||||
|
||||
- Phase voltage - voltage across any phase
|
||||
- Line voltage - voltage between two live lines
|
||||
- Phase current - current through any phase
|
||||
- Line current - current through any live line
|
||||
|
||||
# Three-Phase Load
|
||||
|
||||
$$P = \sqrt{3} V_lI_l\cos\gamma$$
|
||||
|
||||
![](./images/vimscrot-2023-02-17T13:12:48,739518484+00:00.png)
|
||||
|
||||
- 3-phase devices (source and load) are usually balanced, meaning that the impedance in each
|
||||
phase is equal ($Z_1 = Z_2 = Z_3$).
|
||||
- For loads, this means that the voltage across them are the same, apart from the phase angles:
|
||||
|
||||
\begin{align*}
|
||||
v_{1N} = V\cos{2\pi ft} \\
|
||||
v_{2N} = V\cos{2\pi ft - \frac{2\pi}{3} \\
|
||||
v_{3N} = V\cos{2\pi ft + \frac{2\pi}{3}
|
||||
\end{align*}
|
||||
|
||||
- Balanced loads and sources ensure that line/phase currents have equal magnitudes and that the
|
||||
neutral current is 0
|
||||
|
||||
## Star Load
|
||||
|
||||
![](./images/vimscrot-2023-02-17T13:14:49,017883457+00:00.png)
|
||||
|
||||
$$|V_\text{line}| = \sqrt 3 |V_\text{phase}|$$
|
||||
|
||||
$$I_\text{line} = I_\text{phase}$$
|
||||
|
||||
## Delta Load
|
||||
|
||||
![](./images/vimscrot-2023-02-17T13:15:12,490943631+00:00.png)
|
||||
|
||||
$$|V_\text{line}| = |V_\text{phase}|$$
|
||||
|
||||
$$I_\text{line} = \sqrt 3 I_\text{phase}$$
|
88
uni/mmme/2051_electromechanical_devices/basic_circuitry.md
Executable file
@ -0,0 +1,88 @@
|
||||
---
|
||||
author: Akbar Rahman
|
||||
date: \today
|
||||
title: MMME2051 // Basic Circuitry
|
||||
tags: []
|
||||
uuid: 6767b7f0-705a-43a1-9e02-aeee6b454538
|
||||
---
|
||||
|
||||
# Symbols & Notations Used in Circuit Diagrams
|
||||
|
||||
![](./images/vimscrot-2023-02-09T11:07:33,231545943+00:00.png)
|
||||
|
||||
|
||||
![AC Voltage Source](./images/vimscrot-2023-02-09T12:35:04,954248906+00:00.png)
|
||||
|
||||
# Series Circuits
|
||||
|
||||
Summary of this section in tabular form found in slides p30.
|
||||
|
||||
## Resistors
|
||||
|
||||
![](./images/vimscrot-2023-02-09T11:25:05,307411437+00:00.png)
|
||||
|
||||
\begin{align*}
|
||||
I &= I_1 = I_2 = I_3 \\
|
||||
V &= V_1 + V_2 + V_3 \\
|
||||
R &= R_1 + R_2 + R_3
|
||||
\end{align*}
|
||||
|
||||
## Inductors
|
||||
|
||||
More inductors in series makes is harder for current to change rapidly.
|
||||
|
||||
![](./images/vimscrot-2023-02-09T11:26:21,405008860+00:00.png)
|
||||
|
||||
\begin{align*}
|
||||
I &= I_1 = I_2 = I_3 \\
|
||||
V &= V_1 + V_2 + V_3 \\
|
||||
L &= L_1 + L_2 + L_3
|
||||
\end{align*}
|
||||
|
||||
## Capacitors
|
||||
|
||||
More capacitors in series makes is easier for voltage to change rapidly.
|
||||
|
||||
![](./images/vimscrot-2023-02-09T11:26:43,223213152+00:00.png)
|
||||
|
||||
\begin{align*}
|
||||
I &= I_1 = I_2 = I_3 \\
|
||||
V &= V_1 + V_2 + V_3 \\
|
||||
\frac 1C &= \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}
|
||||
\end{align*}
|
||||
|
||||
# Parallel Circuits
|
||||
|
||||
## Resistors
|
||||
|
||||
![](./images/vimscrot-2023-02-09T11:27:45,821432874+00:00.png)
|
||||
|
||||
\begin{align*}
|
||||
I &= I_1 + I_2 + I_3 \\
|
||||
V &= V_1 = V_2 = V_3 \\
|
||||
\frac 1R &= \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}
|
||||
\end{align*}
|
||||
|
||||
## Inductors
|
||||
|
||||
More inductors in parallel makes is easier for current to change rapidly.
|
||||
|
||||
![](./images/vimscrot-2023-02-09T11:30:46,501506991+00:00.png)
|
||||
|
||||
\begin{align*}
|
||||
I &= I_1 + I_2 + I_3 \\
|
||||
V &= V_1 = V_2 = V_3 \\
|
||||
\frac 1L &= \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}
|
||||
\end{align*}
|
||||
|
||||
## Capacitors
|
||||
|
||||
More capacitors in parallel makes is harder for voltage to change rapidly.
|
||||
|
||||
![](./images/vimscrot-2023-02-09T11:31:31,829222602+00:00.png)
|
||||
|
||||
\begin{align*}
|
||||
I &= I_1 + I_2 + I_3 \\
|
||||
V &= V_1 = V_2 = V_3 \\
|
||||
C &= C_1 + C_2 + C_3
|
||||
\end{align*}
|
@ -32,6 +32,10 @@ where $V$ is voltage across a component, $I$ is current through it, and $R$ is r
|
||||
- Impedance is used when there are energy storage elements to a component.
|
||||
- Resistance, a special case of impedance, can be used when there is no storage element
|
||||
|
||||
## Admittance
|
||||
|
||||
$$Y \frac1Z$$
|
||||
|
||||
# Kirchhoff's Laws
|
||||
|
||||
## Current
|
||||
@ -84,3 +88,11 @@ Capacitors try to minimize changes in voltage.
|
||||
|
||||
If a capacitor is shorted, the current through the connecting wires will be extremely high, causing
|
||||
the wires to heat up.
|
||||
|
||||
# Root Mean Square (RMS)
|
||||
|
||||
$$x_{\text{RMS}} = \sqrt{\frac{x_1^2 + \dots + x_n^2}{n}}$$
|
||||
|
||||
For a sinusoidal wave:
|
||||
|
||||
$$x_\text{RMS} = \frac{A}{\sqrt2}$$
|
||||
|
After Width: | Height: | Size: 20 KiB |
After Width: | Height: | Size: 21 KiB |
After Width: | Height: | Size: 25 KiB |
After Width: | Height: | Size: 26 KiB |
After Width: | Height: | Size: 33 KiB |
After Width: | Height: | Size: 33 KiB |
After Width: | Height: | Size: 16 KiB |
After Width: | Height: | Size: 14 KiB |
After Width: | Height: | Size: 9.7 KiB |
After Width: | Height: | Size: 14 KiB |
After Width: | Height: | Size: 12 KiB |
After Width: | Height: | Size: 8.5 KiB |
After Width: | Height: | Size: 6.4 KiB |
After Width: | Height: | Size: 11 KiB |
After Width: | Height: | Size: 12 KiB |
After Width: | Height: | Size: 30 KiB |
After Width: | Height: | Size: 12 KiB |
After Width: | Height: | Size: 50 KiB |
After Width: | Height: | Size: 51 KiB |
After Width: | Height: | Size: 46 KiB |
After Width: | Height: | Size: 28 KiB |
After Width: | Height: | Size: 18 KiB |
After Width: | Height: | Size: 27 KiB |
After Width: | Height: | Size: 16 KiB |
59
uni/mmme/2051_electromechanical_devices/kirchhoff.md
Executable file
@ -0,0 +1,59 @@
|
||||
---
|
||||
author: Akbar Rahman
|
||||
date: \today
|
||||
title: MMME2051 // Kirchhoff's Current Law, Voltage Law
|
||||
tags: [ kirchhoff, kcl, kvl ]
|
||||
uuid: 88e2eb6a-7f6a-4ea0-9850-81305028e7b5
|
||||
lecture_slides: ./lecture_slides/MMME2051EMD_Lecture2A.pdf
|
||||
---
|
||||
|
||||
# Application of Kirchhoff's Current/Voltage Laws (KCL, KVL)
|
||||
|
||||
(lecture slides 14-21)
|
||||
|
||||
![](./images/vimscrot-2023-02-09T11:09:25,300096365+00:00.png)
|
||||
|
||||
1. Identify all the loops in the circuit and assign each loop a "loop current" variable:
|
||||
|
||||
|
||||
![](./images/vimscrot-2023-02-09T11:10:56,126073331+00:00.png)
|
||||
|
||||
1. Identify "branch current" values (apply KCL)
|
||||
|
||||
|
||||
![](./images/vimscrot-2023-02-09T11:11:59,570957109+00:00.png)
|
||||
|
||||
1. Apply KVL to each loop:
|
||||
|
||||
Loop 1: $10 - 2 - V_1 - V_2 = 0$
|
||||
Loop 2: $V_2 - V_4 = 0$
|
||||
Loop 3: $V_4 - V_3 - V_5 = 0$
|
||||
|
||||
![](./images/vimscrot-2023-02-09T11:13:18,376344102+00:00.png)
|
||||
|
||||
1. Apply Ohm's Law to KVL
|
||||
|
||||
Loop 1 (origin at node A):
|
||||
|
||||
\begin{align*}
|
||||
0 &= 10 - 2 - V_1 - V_2 \\
|
||||
&= 8 - I_1R_1 - (I_1-I_2)R_2 = 0 \\
|
||||
8 &= I_1(R_1+R+2) - I_2R_2 \\
|
||||
&= 6I_1 - I_2
|
||||
\end{align*}
|
||||
|
||||
Loop 2 (origin at node B):
|
||||
|
||||
\begin{align*}
|
||||
0 &= V_2 - v_4 \\
|
||||
&= (I_1-I_2)R_2 - (I_2-I_3)R_4 \\
|
||||
&= I_1 - 3I_2 + 2I_3
|
||||
\end{align*}
|
||||
|
||||
Loop 3 (origin at node C):
|
||||
|
||||
\begin{align*}
|
||||
0 &= V_4 - V_3 - V_5 \\
|
||||
&= (I_2-I_3)R_4 - I_3R_3 - I_3R_5 \\
|
||||
&= 2I_2 - 5I_3
|
||||
\end{align*}
|