big rename
174
uni/mmme/1026_maths_for_engineering/calculus.md
Executable file
@@ -0,0 +1,174 @@
|
||||
---
|
||||
author: Alvie Rahman
|
||||
date: \today
|
||||
title: MMME1026 // Calculus
|
||||
tags: [ uni, nottingham, mechanical, engineering, mmme1026, maths, calculus ]
|
||||
---
|
||||
|
||||
# Calculus of One Variable Functions
|
||||
|
||||
## Key Terms
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Function
|
||||
|
||||
A function is a rule that assigns a **unique** value $f(x)$ to each value $x$ in a given *domain*.
|
||||
|
||||
</summary>
|
||||
|
||||
The set of value taken by $f(x)$ when $x$ takes all possible value in the domain is the *range* of
|
||||
$f(x)$.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Rational Functions
|
||||
|
||||
A function of the type
|
||||
|
||||
$$ \frac{f(x)}{g(x)} $$
|
||||
|
||||
</summary>
|
||||
|
||||
where $f$ and $g$ are polynomials, is called a rational function.
|
||||
|
||||
Its range has to exclude all those values of $x$ where $g(x) = 0$.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Inverse Functions
|
||||
|
||||
Consider the function $f(x) = y$.
|
||||
If $f$ is such that for each $y$ in the range there is exactly one $x$ in the domain,
|
||||
we can define the inverse $f^{-1}$ as:
|
||||
|
||||
$$f^{-1}(y) = f^{-1}(f(x)) = x$$
|
||||
|
||||
</summary>
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Limits
|
||||
|
||||
Consider the following:
|
||||
|
||||
$$f(x) = \frac{\sin x}{x}$$
|
||||
|
||||
The value of the function can be easily calculated when $x \neq 0$, but when $x=0$, we get the
|
||||
expression $\frac{\sin 0 }{0}$.
|
||||
However, when we evaluate $f(x)$ for values that approach 0, those values of $f(x)$ approach 1.
|
||||
|
||||
This suggests defining the limit of a function
|
||||
|
||||
$$\lim_{x \rightarrow a} f(x)$$
|
||||
|
||||
to be the limiting value, if it exists, of $f(x)$ as $x$ gets approaches $a$.
|
||||
|
||||
</summary>
|
||||
|
||||
#### Limits from Above and Below
|
||||
|
||||
Sometimes approaching 0 with small positive values of $x$ gives you a different limit from
|
||||
approaching with small negative values of $x$.
|
||||
|
||||
The limit you get from approaching 0 with positive values is known as the limit from above:
|
||||
|
||||
$$\lim_{x \rightarrow a^+} f(x)$$
|
||||
|
||||
and with negative values is known as the limit from below:
|
||||
|
||||
$$\lim_{x \rightarrow a^-} f(x)$$
|
||||
|
||||
If the two limits are equal, we simply refer to the *limit*.
|
||||
|
||||
|
||||
</details>
|
||||
|
||||
## Important Functions
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Exponential Functions
|
||||
|
||||
$$f(x) = e^x = \exp x$$
|
||||
|
||||
</summary>
|
||||
|
||||
It can also be written as an infinite series:
|
||||
|
||||
$$\exp x = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + ...$$
|
||||
|
||||
The two important limits to know are:
|
||||
|
||||
- as $x \rightarrow + \infty$, $\exp x \rightarrow +\infty$ ($e^x \rightarrow +\infty$)
|
||||
- as $x \rightarrow -\infty$, $\exp x \rightarrow 0$ ($e^x \rightarrow 0$)
|
||||
|
||||
Note that $e^x > 0$ for all real values of $x$.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Hyperbolic Functions (sinh and cosh)
|
||||
|
||||
The hyperbolic sine ($\sinh$) and hyperbolic cosine function ($\cosh$) are defined by:
|
||||
|
||||
$$\sinh x = \frac 1 2 (e^x - e^{-x}) \text{ and } \cosh x = \frac 1 2 (e^x + e^{-x})$$
|
||||
$$\tanh = \frac{\sinh x}{\cosh x}$$
|
||||
|
||||
</summary>
|
||||
|
||||
](./images/Sinh_cosh_tanh.svg)
|
||||
|
||||
Some key facts about these functions:
|
||||
|
||||
- $\cosh$ has even symmetry and $\sinh$ and $\tanh$ have odd symmetry
|
||||
- as $x \rightarrow + \infty$, $\cosh x \rightarrow +\infty$ and $\sinh x \rightarrow +\infty$
|
||||
- $\cosh^2x - \sinh^2x = 1$
|
||||
- $\tanh$'s limits are -1 and +1
|
||||
- Derivatives:
|
||||
- $\frac{\mathrm{d}}{\mathrm{d}x} \sinh x = \cosh x$
|
||||
- $\frac{\mathrm{d}}{\mathrm{d}x} \cosh x = \sinh x$
|
||||
- $\frac{\mathrm{d}}{\mathrm{d}x} \tanh x = \frac{1}{\cosh^2x}$
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Natural Logarithm
|
||||
|
||||
$$\ln{e^y} = \ln{\exp y} = y$$
|
||||
|
||||
</summary>
|
||||
|
||||
Since the exponential of any real number is positive, the domain of $\ln$ is $x > 0$.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Implicit Functions
|
||||
|
||||
An implicit function takes the form
|
||||
|
||||
$$f(x, y) = 0$$
|
||||
|
||||
</summary>
|
||||
|
||||
To draw the curve of an implicit function you have to rewrite it in the form $y = f(x)$.
|
||||
There may be more than one $y$ value for each $x$ value.
|
||||
|
||||
</details>
|
390
uni/mmme/1026_maths_for_engineering/complex_numbers.md
Executable file
@@ -0,0 +1,390 @@
|
||||
---
|
||||
author: Alvie Rahman
|
||||
date: \today
|
||||
title: MMME1026 // Complex Numbers
|
||||
tags: [ uni, nottingham, mechanical, engineering, mmme1026, maths, complex_numbers ]
|
||||
---
|
||||
|
||||
# Complex Numbers
|
||||
|
||||
## What is a Complex Number?
|
||||
|
||||
- $i$ is the unit imaginary number, which is defined by:
|
||||
|
||||
$$ i^2 = -1 $$
|
||||
|
||||
- An arbritary complex number is written in the form
|
||||
|
||||
$$z = x + iy$$
|
||||
|
||||
Where:
|
||||
|
||||
- $x$ is the real part of $z$ (which you may seen written as $\Re(z) = x$ or Re$(z) = x$)
|
||||
- $y$ is the imaginary part of $z$ (which you may seen written as $\Im(z) = y$ or Im$(z) = y$)
|
||||
|
||||
- Two complex numbers are equal if both their real and imaginary parts are equal
|
||||
|
||||
e.g. $$(3 + 4i) + (1 -2i) = (3+1) + i(4-2) = 2 + 2i$$
|
||||
|
||||
### The Complex Conjugate
|
||||
|
||||
Given complex number $z$:
|
||||
|
||||
$$z = z + iy$$
|
||||
|
||||
The complex conjugate of z, $\bar z$ is:
|
||||
|
||||
$$\bar{z} = z -iy$$
|
||||
|
||||
### Division of Complex Numbers
|
||||
|
||||
- Multiply numerator and denominator by the conjugate of the denominator
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example
|
||||
|
||||
</summary>
|
||||
|
||||
> \begin{align*}
|
||||
z_1 &= 5 + i \\
|
||||
z_2 &= 1 -i \\
|
||||
\\
|
||||
\frac{z_1}{z_2} &= \frac{5+i}{1-i} \cdot \frac{\bar{z_2}}{\bar{z_2}} = \frac{(5+i)(1+i)}{(1-i)(1+i)} \\
|
||||
&= \frac{5 + i + 5i -1}{1 + 1} \\
|
||||
&= \frac{4 + 6i}{2} = 2 + 3i
|
||||
> \end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
### Algebra and Conjugation
|
||||
|
||||
When taking complex conjugate of an algebraic expresion, we can replace $i$ by $-i$ before or after
|
||||
doing the algebraic operations:
|
||||
|
||||
\begin{align*}
|
||||
\overline{z_1+z_2} &= \bar{z_1}+\bar{z_2} \\
|
||||
\overline{z_1z_2} &= \bar{z_1}\bar{z_2} \\
|
||||
\overline{z_1/z_2} &= \frac{\bar{z_1}}{\bar{z_2}}
|
||||
\end{align*}
|
||||
|
||||
The conjugate of a real number is the same as that number.
|
||||
|
||||
#### Application
|
||||
|
||||
If $z$ is a root of the polynomial equation
|
||||
|
||||
$$0 = az^2 + bz + c$$
|
||||
|
||||
with **real** coefficients $a$, $b$, and $c$, then $\bar{z}$ is also a root because
|
||||
|
||||
\begin{align*}
|
||||
0 &= \overline{az^2 + bz + c} \\
|
||||
&= \bar{a}\bar{z}^2 + \bar{b}\bar{z} + \bar{c} \\
|
||||
&= a\bar{z}^2 + b\bar{z} + c
|
||||
\end{align*}
|
||||
|
||||
### The Argand Diagram
|
||||
|
||||
A general complex number $z = x + iy$ has two components so it can can be represented as a point in
|
||||
the plane with Cartesion coordinates $(x, y)$.
|
||||
|
||||
\begin{align*}
|
||||
4-2i &\leftrightarrow (4, -2) \\
|
||||
-i &\leftrightarrow (0, -1) \\
|
||||
z &\leftrightarrow (x, y) \\
|
||||
\bar z &\leftrightarrow (x, -y)
|
||||
\end{align*}
|
||||
|
||||
### Plotting on a Polar Graph
|
||||
|
||||
We can also describe points in the complex plain with polar coordinates $(r, \theta)$:
|
||||
|
||||
\begin{align*}
|
||||
z &= r(\cos\theta + i\sin\theta) &\text{ polar form of $z$} \\
|
||||
r &= \sqrt{x^2+y^2} &\text{(modulus)}\\
|
||||
\theta &= \arg z,\text{ where} \tan \theta = \frac y x &\text{(argument)} \\
|
||||
x &= r\cos \theta \\
|
||||
y &= r\sin \theta
|
||||
\end{align*}
|
||||
|
||||
Be careful when turning $(x, y)$ into $(r, \theta)$ form as $\tan^{-1} \frac y x = \theta$ does not
|
||||
always hold true as there are many solutions.
|
||||
|
||||
#### Choosing $\theta$ Correctly
|
||||
|
||||
1. Determine which quadrant the point is in (draw a picture).
|
||||
2. Find a value of $\theta$ such that $\tan \theta = \frac y x$ and check that it is consistent.
|
||||
If it puts you in the wrong quadrant, add or subtract $\pi$.
|
||||
|
||||
## Exponential Functions
|
||||
|
||||
- The exponential function $f(x) = \exp x$ may be wirtten as an infinite series:
|
||||
|
||||
$$\exp x = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots $$
|
||||
|
||||
- The function $f(x) = e^{-x}$ is just $\frac 1 {e^x}$
|
||||
- Note the important properties:
|
||||
|
||||
\begin{align*}
|
||||
e^{a+b} &= e^a e^b \\
|
||||
(e^a)^b &= e^{ab}
|
||||
\end{align*}
|
||||
|
||||
## Euler's Formula
|
||||
|
||||
$$e^{i\theta} = \cos\theta + i\sin\theta$$
|
||||
|
||||
- Properties of $e^{i\theta}$: For any real angle $\theta$ we have
|
||||
|
||||
$$|e^{i\theta}| = |\cos\theta + i\sin\theta| = \sqrt{\cos^2\theta + \sin^2\theta} = 1$$
|
||||
|
||||
and
|
||||
|
||||
$$ \arg {e^{i\theta}} = \theta $$
|
||||
|
||||
- A complex number in *polar form*, where $r = |z|$, and $\theta = \arg z$, may alternatively be
|
||||
written in its *exponential form*:
|
||||
|
||||
$$z = re^{i\theta}$$
|
||||
|
||||
**Note**: $$\bar z = r\cos\theta - ir\sin\theta = re^{-i\theta}$$
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example 1
|
||||
|
||||
Write $z = -1 + i$ in exponential form
|
||||
|
||||
</summary>
|
||||
|
||||
> $\arg z = \frac {3\pi} 4$
|
||||
> $|z| = \sqrt 2$
|
||||
>
|
||||
> So $z = \sqrt2e^{i\frac{3\pi} 4}$
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example 2
|
||||
|
||||
The equations for a mechanical vibration problem are found to have the following mathematical
|
||||
solution:
|
||||
|
||||
$$z(t) = \frac{e^{i\omega t}}{\omega_0^2-\omega^2 + i\gamma}$$
|
||||
|
||||
</summary>
|
||||
|
||||
where $t$ represents time and $\omega$, $\omega_0$ and $\gamma$ are all positive real physical
|
||||
constants.
|
||||
Although $z(t)$
|
||||
is complex and cannot directly represent a physical solution, it turns out that the real and
|
||||
imaginary parts $x(t)$ and $y(t)$ in $z(t) = x(t) + iy(t)$ can. Polar notation can be used to extract
|
||||
this physical information efficiently as follows:
|
||||
|
||||
a. Put the denominator in the form
|
||||
|
||||
$$ae^{i\delta}$$
|
||||
|
||||
where you should give explicit expressions for $a$ and $\delta$ in terms of $\gamma$, $\gamma_0$,
|
||||
and $\gamma$.
|
||||
|
||||
|
||||
> \begin{align*}
|
||||
a &= \sqrt{\gamma^2 + (\omega_0^2 - \omega^2)^2} \\
|
||||
\delta &= \tan^{-1}\frac \delta {\omega_0^2 - \omega^2}
|
||||
> \end{align*}
|
||||
|
||||
b. Hence find the constants $b$ and $\varphi$ such that
|
||||
|
||||
$$x(t) = b\cos(\omega t + \varphi)$$
|
||||
|
||||
and write a similar expression for $y(t)$.
|
||||
|
||||
> \begin{align*}
|
||||
z &= \frac{e^i\omega t}{ae^{i\delta}} = \frac 1 a e^{i (\omega t - \delta)} \\
|
||||
x + iy &= \frac 1 a \cos(\omega t - \delta) + \frac 1 a \sin(\omega t - \delta) \\
|
||||
\therefore \Re z &= x = \frac 1 a \cos(\omega t - \delta), \\
|
||||
\Im z &= y = \frac 1 a \sin(\omega t - \delta) \\
|
||||
\\
|
||||
b &= \frac 1 a = \frac 1 {\sqrt{\gamma^2 + (\omega_0^2 - \omega^2)^2}} \\
|
||||
\varphi &= -\delta = \tan^{-1}\frac \delta {\omega_0^2 - \omega^2}\\
|
||||
\\
|
||||
y(t) &= \frac 1 a \sin(\omega t - \delta) \\
|
||||
> \end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
## Products of Complex Numbers
|
||||
|
||||
Suppose we have 2 complex numbers:
|
||||
|
||||
$$z_1 = x_1 + iy_1 = r_1e^{i\theta_1}$$
|
||||
$$z_2 = x_2 + iy_2 = r_2e^{i\theta_2}$$
|
||||
|
||||
Using $e^a e^b = e^{a+b}$, the product is:
|
||||
|
||||
\begin{align*}
|
||||
z_3 = z_1 z_2 &= (r_1e^{i\theta_1})(r_2e^{i\theta_2}) \\
|
||||
&= r_1r_2e^{i\theta_1}e^{i\theta_2} \\
|
||||
&= r_1r_2e^{i(\theta_1+\theta_2)} \\
|
||||
\\
|
||||
|z_1z_2| &= |z_1|\times|z_2| \\
|
||||
\arg z_1z_2 &= \arg z_1 \times \arg z_2
|
||||
\end{align*}
|
||||
|
||||
## de Moivre's Theorem
|
||||
|
||||
Let $z = re^{i\theta}$. Consider $z^n$.
|
||||
|
||||
Since $z = r(\cos\theta + i\sin\theta)$,
|
||||
\begin{align*}
|
||||
z^n &= r^n(\cos\theta + i\sin\theta)^n &\text{(1)} \\
|
||||
\end{align*}
|
||||
|
||||
But also
|
||||
|
||||
\begin{align*}
|
||||
z^n &= (re^{i\theta})^n \\
|
||||
&= r^n(e^{i\theta})^n \\
|
||||
&= r^ne^{in\theta} \\
|
||||
&= r^n(\cos{n\theta} + i\sin{n\theta}) &\text{(2)} \\
|
||||
\end{align*}
|
||||
|
||||
By equating (1) and (2), we find de Moivre's theorem:
|
||||
|
||||
\begin{align*}
|
||||
r^n(\cos\theta +i\sin\theta)^n &= r^n(\cos{n\theta} + i\sin{n\theta}) \\
|
||||
(\cos\theta +i\sin\theta)^n &= (\cos{n\theta} + i\sin{n\theta})
|
||||
\end{align*}
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example 1
|
||||
|
||||
Write $1+i$ in polar form and use de Moivre's theorem to calculate $(1+i)^{15}$.
|
||||
|
||||
</summary>
|
||||
|
||||
> \begin{align*}
|
||||
r &= |1+i| = \sqrt2 \\
|
||||
\theta &= \arg{1+i} = \frac \pi 4 \\
|
||||
\\
|
||||
\text{So } 1 + i &= \sqrt2(\cos{\frac pi 4} + i\sin{\frac \pi 4}) = \sqrt2e^{i\frac \pi 4} \text{ and}\\
|
||||
(i+i)^{15} &= (\sqrt2)^{15}\left(\cos{\frac \pi 4} + i\sin{\frac \pi 4}\right)^{15} \\
|
||||
&= 2^{\frac 15 2} \left(\cos{\frac{15\pi} 4} + i\sin{\frac{15\pi} 4}\right) \\
|
||||
&= 2^{\frac 15 2} \left(\frac 1 {\sqrt2} - \frac i {\sqrt2}\right) \\
|
||||
&= 2^7 (1 - i) \\
|
||||
&= 128 - 128i
|
||||
> \end{align*}
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example 2
|
||||
|
||||
Use de Moivre's theorem to show that
|
||||
|
||||
\begin{align*}
|
||||
\cos{2\theta} &= \cos^2\theta-\sin^2\theta \\
|
||||
\text{and} \\
|
||||
\sin{2\theta} &= 2\sin\theta\cos\theta
|
||||
\end{align*}
|
||||
|
||||
</summary>
|
||||
|
||||
> Let $n=2$:
|
||||
|
||||
> \begin{align*}
|
||||
(\cos\theta+i\sin\theta)^2 &= \cos^2\theta + 2i\sin\theta\cos\theta - \sin^2\theta \\
|
||||
\text{Real part: } \cos^2\theta - \sin^2\theta &= \cos{2\theta}\\
|
||||
\text{Imaginary part: } 2\sin\theta\cos\theta &= \sin{2\theta}
|
||||
> \end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example 3
|
||||
|
||||
Given that $n \in \mathbb{N}$ and $\omega = -1 + i$, show that
|
||||
$w^n + \bar{w}^n = 2^{\frac n 2 + 1}\cos{\frac{3n\pi} 4}$ with Euler's formula.
|
||||
|
||||
</summary>
|
||||
|
||||
> \begin{align*}
|
||||
r &= \sqrt{2} \\
|
||||
\arg \omega = \theta &= \frac 3 4 \pi \\
|
||||
\\
|
||||
\omega^n &= r^n(cos{n\theta} + i\sin{n\theta}) \\
|
||||
\bar\omega^n &= r^n(cos{n\theta} - i\sin{n\theta}) \\
|
||||
\omega^n + \bar\omega^n &= r^n(2\cos{n\theta}) \\
|
||||
&= 2^{\frac n 2 + 1}\cos{\frac {3n\pi} 4}
|
||||
> \end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
## Complex Roots of Polynomials
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example
|
||||
|
||||
Find which complex numbers $z$ satisfy
|
||||
|
||||
$$z^3 = 8i$$
|
||||
|
||||
</summary>
|
||||
|
||||
> 1. Write $8i$ in exponential form,
|
||||
>
|
||||
> $|8i| = 8$ and $\arg{8i} = \frac \pi 2$
|
||||
>
|
||||
> $\therefore 8i = 8e^{i\frac \pi 2}$
|
||||
>
|
||||
>
|
||||
> 2. Let the solution be $r = re^{i\theta}$.
|
||||
>
|
||||
> Then $z^3 = r^3e^{3i\theta}$.
|
||||
>
|
||||
> 3. $z^3 = r^3e^{3i\theta} = 8e^{i\frac \pi 2}$
|
||||
>
|
||||
> i. Compare modulus:
|
||||
>
|
||||
> $r^3 = 8 \rightarrow r = 2$
|
||||
>
|
||||
> ii. Compare argument:
|
||||
>
|
||||
> $$3\theta = \frac \pi 2$$
|
||||
>
|
||||
> is a solution but there are others since
|
||||
>
|
||||
> $$e^{i\frac \pi 2} = e^{i \frac \pi 2 + 2n\pi}$$
|
||||
>
|
||||
> so we get a solution whenever
|
||||
>
|
||||
> $$3\theta = \frac \pi 2 + 2n\pi$$
|
||||
>
|
||||
> for any integer `n`
|
||||
>
|
||||
> - $n = 0 \rightarrow z = \sqrt3 + i$
|
||||
> - $n = 1 \rightarrow z = -\sqrt3 + i$
|
||||
> - $n = 2 \rightarrow z = -2i$
|
||||
> - $n = 3 \rightarrow z = \sqrt3 + i$
|
||||
> - $n = 4 \rightarrow z = -\sqrt3 + i$
|
||||
> - The solutions start repeating as you can see
|
||||
>
|
||||
> In general, an $n$-th order polynomial has exactly $n$ complex roots.
|
||||
> Some of these complex roots may be real numbers.
|
||||
>
|
||||
> 4. There are three solutions
|
||||
|
||||
</details>
|
BIN
uni/mmme/1026_maths_for_engineering/images/Matrix_transpose.gif
Normal file
After Width: | Height: | Size: 79 KiB |
265
uni/mmme/1026_maths_for_engineering/images/Sinh_cosh_tanh.svg
Normal file
@@ -0,0 +1,265 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with matplotlib (http://matplotlib.org/) -->
|
||||
<svg id="svg6564" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns="http://www.w3.org/2000/svg" height="403pt" width="403pt" version="1.1" xmlns:cc="http://creativecommons.org/ns#" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 0 403 403" xmlns:dc="http://purl.org/dc/elements/1.1/">
|
||||
<defs>
|
||||
<style id="style6568" type="text/css">*{stroke-linecap:butt;stroke-linejoin:round;stroke-miterlimit:100000;}</style>
|
||||
<path id="m6d0dc4c4e2" stroke-width=".5" d="m0 0v-4" stroke="#000"/>
|
||||
<path id="m2997e254fe" stroke-width=".5" d="m0 0v4" stroke="#000"/>
|
||||
<path id="BitstreamVeraSans-Roman-31" d="m12.406 8.2969h16.11v55.625l-17.532-3.516v8.985l17.438 3.515h9.859v-64.609l16.11-0.0001v-8.2969h-41.985z"/>
|
||||
<path id="BitstreamVeraSans-Roman-2212" d="m10.594 35.5h62.594v-8.297h-62.594z"/>
|
||||
<path id="BitstreamVeraSans-Roman-30" d="m31.781 66.406q-7.609 0-11.453-7.5-3.828-7.484-3.828-22.531 0-14.984 3.828-22.484 3.844-7.5004 11.453-7.5004 7.672 0 11.5 7.5004 3.844 7.5 3.844 22.484 0 15.047-3.844 22.531-3.828 7.5-11.5 7.5m0 7.813q12.266 0 18.735-9.703 6.468-9.688 6.468-28.141 0-18.406-6.468-28.109-6.469-9.6879-18.735-9.6879-12.25 0-18.719 9.6875-6.4682 9.7034-6.4682 28.109 0 18.453 6.4682 28.141 6.469 9.703 18.719 9.703"/>
|
||||
<path id="BitstreamVeraSans-Roman-78" d="m54.891 54.688l-19.782-26.61 20.797-28.078h-10.594l-15.921 21.484-15.907-21.484h-10.609l21.25 28.609-19.438 26.079h10.594l14.5-19.485 14.5 19.485z"/>
|
||||
<path id="md69bb88a81" stroke-width=".5" d="m0 0h4" stroke="#000"/>
|
||||
<path id="m1d1e712049" stroke-width=".5" d="m0 0h-4" stroke="#000"/>
|
||||
<path id="BitstreamVeraSans-Roman-79" d="m32.172-5.0781q-3.797-9.7659-7.422-12.734-3.609-2.985-9.656-2.985h-7.1878v7.516h5.2818q3.703 0 5.75 1.765 2.062 1.7504 4.546 8.2972l1.61 4.0938-22.11 53.813h9.516l17.094-42.766 17.094 42.766h9.515z"/>
|
||||
<path id="BitstreamVeraSans-Roman-3d" d="m10.594 45.406h62.594v-8.203h-62.594zm0-19.922h62.594v-8.296h-62.594z"/>
|
||||
<path id="BitstreamVeraSans-Roman-28" d="m31 75.875q-6.531-11.219-9.719-22.219-3.172-10.984-3.172-22.265 0-11.266 3.203-22.328 3.204-11.063 9.688-22.251h-7.812q-7.313 11.485-10.954 22.563-3.6402 11.078-3.6402 22.016 0 10.89 3.6092 21.921 3.625 11.047 10.985 22.563z"/>
|
||||
<path id="BitstreamVeraSans-Roman-69" d="m9.4219 54.688h8.9841v-54.688h-8.9841zm0 21.296h8.9841v-11.39h-8.9841z"/>
|
||||
<path id="BitstreamVeraSans-Roman-6e" d="m54.891 33.016v-33.016h-8.985v32.719q0 7.765-3.031 11.609-3.031 3.86-9.078 3.86-7.281 0-11.485-4.641-4.203-4.625-4.203-12.641v-30.906h-9.0309v54.688h9.0309v-8.5q3.235 4.937 7.594 7.374 4.375 2.438 10.094 2.438 9.422 0 14.25-5.828 4.844-5.828 4.844-17.156"/>
|
||||
<path id="BitstreamVeraSans-Roman-29" d="m8.0156 75.875h7.8124q7.313-11.516 10.953-22.563 3.641-11.031 3.641-21.921 0-10.938-3.641-22.016-3.64-11.078-10.953-22.563h-7.8124q6.4844 11.188 9.6874 22.25 3.203 11.063 3.203 22.329 0 11.281-3.203 22.265-3.203 11-9.6874 22.219"/>
|
||||
<path id="BitstreamVeraSans-Roman-73" d="m44.281 53.078v-8.5q-3.797 1.953-7.906 2.922-4.094 0.984-8.5 0.984-6.687 0-10.031-2.046-3.344-2.047-3.344-6.157 0-3.125 2.391-4.906 2.39-1.781 9.625-3.391l3.078-0.687q9.562-2.047 13.594-5.781 4.031-3.735 4.031-10.422 0-7.6252-6.031-12.078-6.032-4.4379-16.579-4.4379-4.39 0-9.156 0.8594-4.765 0.85938-10.031 2.5625l-0.0001 9.281q4.9841-2.5935 9.8121-3.8904 4.828-1.2812 9.578-1.2812 6.344 0 9.75 2.1718 3.422 2.1718 3.422 6.1248 0 3.656-2.468 5.61-2.454 1.953-10.813 3.765l-3.125 0.735q-8.344 1.75-12.062 5.39-3.7035 3.641-3.7035 9.985 0 7.718 5.4685 11.906 5.469 4.203 15.531 4.203 4.969 0 9.36-0.734 4.406-0.719 8.109-2.188"/>
|
||||
<path id="BitstreamVeraSans-Roman-68" d="m54.891 33.016v-33.016h-8.985v32.719q0 7.765-3.031 11.609-3.031 3.86-9.078 3.86-7.281 0-11.485-4.641-4.203-4.625-4.203-12.641v-30.906h-9.0309v75.984h9.0309v-29.796q3.235 4.937 7.594 7.374 4.375 2.438 10.094 2.438 9.422 0 14.25-5.828 4.844-5.828 4.844-17.156"/>
|
||||
<path id="BitstreamVeraSans-Roman-63" d="m48.781 52.594v-8.406q-3.812 2.109-7.64 3.156-3.829 1.047-7.735 1.047-8.75 0-13.594-5.547-4.828-5.532-4.828-15.547 0-10.016 4.828-15.563 4.844-5.5309 13.594-5.5309 3.906 0 7.735 1.0469 3.828 1.0469 7.64 3.156v-8.3122q-3.765-1.75-7.797-2.625-4.015-0.8907-8.562-0.8907-12.36 0-19.641 7.7657-7.2654 7.7652-7.2654 20.953 0 13.375 7.3434 21.031 7.36 7.672 20.157 7.672 4.14 0 8.093-0.859 3.953-0.844 7.672-2.547"/>
|
||||
<path id="BitstreamVeraSans-Roman-6f" d="m30.609 48.391q-7.218 0-11.421-5.641-4.204-5.641-4.204-15.453 0-9.813 4.172-15.453 4.188-5.6409 11.453-5.6409 7.188 0 11.375 5.6559 4.204 5.672 4.204 15.438 0 9.719-4.204 15.406-4.187 5.688-11.375 5.688m0 7.609q11.719 0 18.407-7.625 6.703-7.609 6.703-21.078 0-13.422-6.703-21.078-6.688-7.6409-18.407-7.6409-11.765 0-18.437 7.6407-6.6564 7.6562-6.6564 21.078 0 13.469 6.6564 21.078 6.672 7.625 18.437 7.625"/>
|
||||
<path id="BitstreamVeraSans-Roman-61" d="m34.281 27.484q-10.89 0-15.093-2.484-4.204-2.484-4.204-8.5 0-4.781 3.157-7.5938 3.156-2.7968 8.562-2.7968 7.485 0 12 5.2966 4.516 5.297 4.516 14.078v2zm17.922 3.719v-31.203h-8.984v8.2969q-3.078-4.9688-7.672-7.3438t-11.235-2.375q-8.39 0-13.359 4.7188-4.953 4.7187-4.953 12.625 0 9.219 6.172 13.906 6.187 4.688 18.437 4.688h12.61v0.89q0 6.203-4.078 9.594-4.079 3.391-11.453 3.391-4.688 0-9.141-1.125-4.438-1.125-8.531-3.375v8.312q4.922 1.906 9.562 2.844 4.641 0.953 9.031 0.953 11.875 0 17.735-6.156 5.859-6.141 5.859-18.641"/>
|
||||
<path id="BitstreamVeraSans-Roman-74" d="m18.312 70.219v-15.531h18.5v-6.985h-18.5v-29.687q0-6.688 1.829-8.5941 1.828-1.9063 7.453-1.9063h9.218v-7.5156h-9.218q-10.406 0-14.36 3.875-3.9528 3.8906-3.9528 14.141v29.687h-6.5937v6.985h6.5937v15.531z"/>
|
||||
<clipPath id="p875ac5675d">
|
||||
<rect id="rect6866" y="12.96" width="338.8" x="51.435" height="344.88"/>
|
||||
</clipPath>
|
||||
</defs>
|
||||
<metadata id="metadata6870">
|
||||
<rdf:RDF>
|
||||
<cc:Work rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
|
||||
<dc:title/>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g id="figure_1">
|
||||
<g id="patch_1">
|
||||
<path id="path6572" fill="none" d="m0 403.2h403.2v-403.2h-403.2v403.2z"/>
|
||||
</g>
|
||||
<g id="axes_1">
|
||||
<g id="patch_2">
|
||||
<path id="path6576" fill="none" d="m51.435 357.84h338.8v-344.88h-338.8l-0.005 344.88z"/>
|
||||
</g>
|
||||
<g id="line2d_1">
|
||||
<path id="path7422" stroke-linejoin="round" d="m202.58 447.3l2.46-19.45 2.97-21.01 2.96-18.8 2.97-16.83 2.97-15.08 2.97-13.52 2.96-12.12 2.97-10.88 2.97-9.77 2.97-8.79 2.96-7.92 2.97-7.14 2.97-6.46 2.97-5.87 3.39-6.05 3.39-5.47 3.39-4.97 3.82-5.09 4.24-5.17 4.66-5.24 6.36-6.68 13.56-14.09 4.67-5.31 4.24-5.26 3.81-5.2 3.39-5.09 3.39-5.6 2.97-5.41 2.97-5.94 2.97-6.56 2.96-7.25 2.97-8.03 2.97-8.92 2.97-9.93 2.96-11.04 2.97-12.31 2.55-11.68 2.54-12.819 2.54-14.09 2.55-15.489 2.54-17.03 2.54-18.729 1.61-13.013" transform="scale(.8)" stroke="#b30000" stroke-miterlimit="1e5" stroke-width="2.5" fill="none"/>
|
||||
</g>
|
||||
<g id="line2d_2">
|
||||
<path id="path7415" stroke-linejoin="round" d="m202.79 16.2l0.55 4.635 2.97 22.175 2.97 19.799 2.97 17.675 2.96 15.771 2.97 14.065 2.97 12.54 2.97 11.17 2.96 9.94 2.97 8.83 2.97 7.84 2.97 6.95 2.96 6.13 2.97 5.41 2.54 4.11 2.55 3.66 2.54 3.24 2.54 2.86 2.55 2.5 2.54 2.17 2.55 1.85 2.54 1.55 2.54 1.27 2.55 1 2.54 0.74 2.54 0.48 2.55 0.22 2.54-0.02 2.54-0.27 2.55-0.52 2.54-0.78 2.54-1.04 2.55-1.32 2.54-1.6 2.55-1.9 2.54-2.22 2.54-2.56 2.55-2.92 2.54-3.31 2.54-3.73 2.55-4.19 2.54-4.68 2.54-5.21 2.55-5.8 2.54-6.43 2.55-7.14 2.54-7.9 2.54-8.73 2.55-9.65 2.54-10.66 2.54-11.76 2.55-12.976 2.54-14.31 2.54-15.774 2.55-17.387 2.54-19.158 0.56-4.635" transform="scale(.8)" stroke="#00b300" stroke-miterlimit="1e5" stroke-dasharray="7.5, 7.50000000000000000" stroke-width="2.5" fill="none"/>
|
||||
</g>
|
||||
<g id="line2d_3">
|
||||
<path id="path6585" d="m51.435 206.95l106.16-0.1 12.2-0.24 7.46-0.35 5.76-0.48 4.41-0.59 3.73-0.7 3.39-0.86 3.06-1 2.71-1.1 2.71-1.34 2.72-1.59 2.71-1.86 2.71-2.13 3.05-2.69 3.73-3.6 10.18-10.06 3.05-2.62 2.71-2.07 2.72-1.79 2.71-1.53 2.71-1.28 3.06-1.16 3.05-0.92 3.39-0.79 3.73-0.65 4.41-0.53 5.43-0.43 7.12-0.31 10.17-0.21 17.98-0.1 61.38-0.02h28.49" clip-path="url(#p875ac5675d)" stroke="#0000b3" stroke-dasharray="1.000000,3.000000" stroke-width="2" fill="none"/>
|
||||
</g>
|
||||
<g id="patch_3">
|
||||
<path id="path6588" d="m51.435 357.84h338.8" stroke="#000" stroke-linecap="square" fill="none"/>
|
||||
</g>
|
||||
<g id="patch_4">
|
||||
<path id="path6591" d="m51.435 357.84v-344.88" stroke="#000" stroke-linecap="square" fill="none"/>
|
||||
</g>
|
||||
<g id="patch_5">
|
||||
<path id="path6594" d="m390.24 357.84v-344.88" stroke="#000" stroke-linecap="square" fill="none"/>
|
||||
</g>
|
||||
<g id="patch_6">
|
||||
<path id="path6597" d="m51.435 12.96h338.8" stroke="#000" stroke-linecap="square" fill="none"/>
|
||||
</g>
|
||||
<g id="matplotlib.axis_1">
|
||||
<g id="xtick_1">
|
||||
<g id="line2d_4">
|
||||
<path id="path6602" d="m199.66 357.84v-344.88" clip-path="url(#p875ac5675d)" stroke="#000" stroke-dasharray="1.000000,3.000000" stroke-width=".5" fill="none"/>
|
||||
</g>
|
||||
<g id="line2d_5">
|
||||
<g id="g6608">
|
||||
<use id="use6610" xlink:href="#m6d0dc4c4e2" stroke="#000000" y="357.84" x="199.6621875" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_6">
|
||||
<g id="g6616">
|
||||
<use id="use6618" xlink:href="#m2997e254fe" stroke="#000000" y="12.96" x="199.6621875" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_1"><!-- −1 -->
|
||||
<g id="g6625" transform="translate(190.82 370.96) scale(.12 -.12)">
|
||||
<use id="use6627" xlink:href="#BitstreamVeraSans-Roman-2212"/>
|
||||
<use id="use6629" x="83.7890625" xlink:href="#BitstreamVeraSans-Roman-31"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_2">
|
||||
<g id="line2d_7">
|
||||
<path id="path6633" d="m220.84 357.84v-344.88" clip-path="url(#p875ac5675d)" stroke="#000" stroke-dasharray="1.000000,3.000000" stroke-width=".5" fill="none"/>
|
||||
</g>
|
||||
<g id="line2d_8">
|
||||
<g id="g6636">
|
||||
<use id="use6638" xlink:href="#m6d0dc4c4e2" stroke="#000000" y="357.84" x="220.8375" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_9">
|
||||
<g id="g6641">
|
||||
<use id="use6643" xlink:href="#m2997e254fe" stroke="#000000" y="12.96" x="220.8375" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_2"><!-- 0 -->
|
||||
<g id="g6649" transform="translate(217.02 370.96) scale(.12 -.12)">
|
||||
<use id="use6651" xlink:href="#BitstreamVeraSans-Roman-30"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_3">
|
||||
<g id="line2d_10">
|
||||
<path id="path6655" d="m242.01 357.84v-344.88" clip-path="url(#p875ac5675d)" stroke="#000" stroke-dasharray="1.000000,3.000000" stroke-width=".5" fill="none"/>
|
||||
</g>
|
||||
<g id="line2d_11">
|
||||
<g id="g6658">
|
||||
<use id="use6660" xlink:href="#m6d0dc4c4e2" stroke="#000000" y="357.84" x="242.0128125" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_12">
|
||||
<g id="g6663">
|
||||
<use id="use6665" xlink:href="#m2997e254fe" stroke="#000000" y="12.96" x="242.0128125" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_3"><!-- 1 -->
|
||||
<g id="g6668" transform="translate(238.2 370.96) scale(.12 -.12)">
|
||||
<use id="use6670" xlink:href="#BitstreamVeraSans-Roman-31"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_4"><!-- x -->
|
||||
<g id="g6676" transform="translate(217.29 387.57) scale(.12 -.12)">
|
||||
<use id="use6678" xlink:href="#BitstreamVeraSans-Roman-78"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="matplotlib.axis_2">
|
||||
<g id="ytick_1">
|
||||
<g id="line2d_13">
|
||||
<path id="path6683" d="m51.435 206.96h338.8" clip-path="url(#p875ac5675d)" stroke="#000" stroke-dasharray="1.000000,3.000000" stroke-width=".5" fill="none"/>
|
||||
</g>
|
||||
<g id="line2d_14">
|
||||
<g id="g6689">
|
||||
<use id="use6691" xlink:href="#md69bb88a81" stroke="#000000" y="206.955" x="51.435" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_15">
|
||||
<g id="g6697">
|
||||
<use id="use6699" xlink:href="#m1d1e712049" stroke="#000000" y="206.955" x="390.24" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_5"><!-- −1 -->
|
||||
<g id="g6702" transform="translate(29.744 210.27) scale(.12 -.12)">
|
||||
<use id="use6704" xlink:href="#BitstreamVeraSans-Roman-2212"/>
|
||||
<use id="use6706" x="83.7890625" xlink:href="#BitstreamVeraSans-Roman-31"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_2">
|
||||
<g id="line2d_16">
|
||||
<path id="path6710" d="m51.435 185.4h338.8" clip-path="url(#p875ac5675d)" stroke="#000" stroke-dasharray="1.000000,3.000000" stroke-width=".5" fill="none"/>
|
||||
</g>
|
||||
<g id="line2d_17">
|
||||
<g id="g6713">
|
||||
<use id="use6715" xlink:href="#md69bb88a81" stroke="#000000" y="185.4" x="51.435" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_18">
|
||||
<g id="g6718">
|
||||
<use id="use6720" xlink:href="#m1d1e712049" stroke="#000000" y="185.4" x="390.24" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_6"><!-- 0 -->
|
||||
<g id="g6723" transform="translate(39.8 188.71) scale(.12 -.12)">
|
||||
<use id="use6725" xlink:href="#BitstreamVeraSans-Roman-30"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_3">
|
||||
<g id="line2d_19">
|
||||
<path id="path6729" d="m51.435 163.84h338.8" clip-path="url(#p875ac5675d)" stroke="#000" stroke-dasharray="1.000000,3.000000" stroke-width=".5" fill="none"/>
|
||||
</g>
|
||||
<g id="line2d_20">
|
||||
<g id="g6732">
|
||||
<use id="use6734" xlink:href="#md69bb88a81" stroke="#000000" y="163.845" x="51.435" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_21">
|
||||
<g id="g6737">
|
||||
<use id="use6739" xlink:href="#m1d1e712049" stroke="#000000" y="163.845" x="390.24" stroke-width=".5"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_7"><!-- 1 -->
|
||||
<g id="g6742" transform="translate(39.8 167.16) scale(.12 -.12)">
|
||||
<use id="use6744" xlink:href="#BitstreamVeraSans-Roman-31"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_8"><!-- y -->
|
||||
<g id="g6750" transform="translate(22.249 188.95) rotate(-90) scale(.12 -.12)">
|
||||
<use id="use6752" xlink:href="#BitstreamVeraSans-Roman-79"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="legend_1">
|
||||
<g id="patch_7">
|
||||
<path id="path6756" d="m248.34 350.64h134.7v-67.73h-134.7z" stroke="#000" fill="#fff"/>
|
||||
</g>
|
||||
<g id="line2d_22">
|
||||
<path id="path6759" d="m258.42 294.57h20.16" stroke="#b30000" stroke-linecap="square" stroke-width="2" fill="none"/>
|
||||
</g>
|
||||
<g id="text_9"><!-- y = sinh(x) -->
|
||||
<g id="g6773" transform="translate(294.42 299.61) scale(.144 -.144)">
|
||||
<use id="use6775" xlink:href="#BitstreamVeraSans-Roman-79"/>
|
||||
<use id="use6777" x="59.1796875" xlink:href="#BitstreamVeraSans-Roman-20"/>
|
||||
<use id="use6779" x="90.966796875" xlink:href="#BitstreamVeraSans-Roman-3d"/>
|
||||
<use id="use6781" x="174.755859375" xlink:href="#BitstreamVeraSans-Roman-20"/>
|
||||
<use id="use6783" x="206.54296875" xlink:href="#BitstreamVeraSans-Roman-73"/>
|
||||
<use id="use6785" x="258.642578125" xlink:href="#BitstreamVeraSans-Roman-69"/>
|
||||
<use id="use6787" x="286.42578125" xlink:href="#BitstreamVeraSans-Roman-6e"/>
|
||||
<use id="use6789" x="349.8046875" xlink:href="#BitstreamVeraSans-Roman-68"/>
|
||||
<use id="use6791" x="413.18359375" xlink:href="#BitstreamVeraSans-Roman-28"/>
|
||||
<use id="use6793" x="452.197265625" xlink:href="#BitstreamVeraSans-Roman-78"/>
|
||||
<use id="use6795" x="511.376953125" xlink:href="#BitstreamVeraSans-Roman-29"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_24">
|
||||
<path id="path6798" d="m258.42 315.71h20.16" stroke="#00b300" stroke-dasharray="6.000000,6.000000" stroke-width="2" fill="none"/>
|
||||
</g>
|
||||
<g id="text_10"><!-- y = cosh(x) -->
|
||||
<g id="g6806" transform="translate(294.42 320.75) scale(.144 -.144)">
|
||||
<use id="use6808" xlink:href="#BitstreamVeraSans-Roman-79"/>
|
||||
<use id="use6810" x="59.1796875" xlink:href="#BitstreamVeraSans-Roman-20"/>
|
||||
<use id="use6812" x="90.966796875" xlink:href="#BitstreamVeraSans-Roman-3d"/>
|
||||
<use id="use6814" x="174.755859375" xlink:href="#BitstreamVeraSans-Roman-20"/>
|
||||
<use id="use6816" x="206.54296875" xlink:href="#BitstreamVeraSans-Roman-63"/>
|
||||
<use id="use6818" x="261.5234375" xlink:href="#BitstreamVeraSans-Roman-6f"/>
|
||||
<use id="use6820" x="322.705078125" xlink:href="#BitstreamVeraSans-Roman-73"/>
|
||||
<use id="use6822" x="374.8046875" xlink:href="#BitstreamVeraSans-Roman-68"/>
|
||||
<use id="use6824" x="438.18359375" xlink:href="#BitstreamVeraSans-Roman-28"/>
|
||||
<use id="use6826" x="477.197265625" xlink:href="#BitstreamVeraSans-Roman-78"/>
|
||||
<use id="use6828" x="536.376953125" xlink:href="#BitstreamVeraSans-Roman-29"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_26">
|
||||
<path id="path6831" d="m258.42 336.85h20.16" stroke="#0000b3" stroke-dasharray="1.000000,3.000000" stroke-width="2" fill="none"/>
|
||||
</g>
|
||||
<g id="text_11"><!-- y = tanh(x) -->
|
||||
<g id="g6839" transform="translate(294.42 341.89) scale(.144 -.144)">
|
||||
<use id="use6841" xlink:href="#BitstreamVeraSans-Roman-79"/>
|
||||
<use id="use6843" x="59.1796875" xlink:href="#BitstreamVeraSans-Roman-20"/>
|
||||
<use id="use6845" x="90.966796875" xlink:href="#BitstreamVeraSans-Roman-3d"/>
|
||||
<use id="use6847" x="174.755859375" xlink:href="#BitstreamVeraSans-Roman-20"/>
|
||||
<use id="use6849" x="206.54296875" xlink:href="#BitstreamVeraSans-Roman-74"/>
|
||||
<use id="use6851" x="245.751953125" xlink:href="#BitstreamVeraSans-Roman-61"/>
|
||||
<use id="use6853" x="307.03125" xlink:href="#BitstreamVeraSans-Roman-6e"/>
|
||||
<use id="use6855" x="370.41015625" xlink:href="#BitstreamVeraSans-Roman-68"/>
|
||||
<use id="use6857" x="433.7890625" xlink:href="#BitstreamVeraSans-Roman-28"/>
|
||||
<use id="use6859" x="472.802734375" xlink:href="#BitstreamVeraSans-Roman-78"/>
|
||||
<use id="use6861" x="531.982421875" xlink:href="#BitstreamVeraSans-Roman-29"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 18 KiB |
After Width: | Height: | Size: 59 KiB |
744
uni/mmme/1026_maths_for_engineering/systems_and_matrices.md
Executable file
@@ -0,0 +1,744 @@
|
||||
---
|
||||
author: Alvie Rahman
|
||||
date: \today
|
||||
title: MMME1026 // Systems of Equations and Matrices
|
||||
tags: [ uni, nottingham, mechanical, engineering, mmme1026, maths, systems_of_equations, matrices ]
|
||||
---
|
||||
# Systems of Equations (Simultaneous Equations)
|
||||
|
||||
## Gaussian Elimination
|
||||
|
||||
Gaussian eliminiation can be used when the number of unknown variables you have is equal to the
|
||||
number of equations you are given.
|
||||
|
||||
I'm pretty sure it's the name for the method you use to solve simultaneous equations in school.
|
||||
|
||||
For example if you have 1 equation and 1 unknown:
|
||||
|
||||
\begin{align*}
|
||||
2x &= 6 \\
|
||||
x &= 3
|
||||
\end{align*}
|
||||
|
||||
### Number of Solutions
|
||||
|
||||
Let's generalise the example above to
|
||||
|
||||
$$ax = b$$
|
||||
|
||||
There are 3 possible cases:
|
||||
|
||||
\begin{align*}
|
||||
a \ne 0 &\rightarrow x = \frac b a \\
|
||||
a = 0, b \ne 0 &\rightarrow \text{no solution for $x$} \\
|
||||
a = 0, b = 0 &\rightarrow \text{infinite solutions for $x$}
|
||||
\end{align*}
|
||||
|
||||
### 2x2 Systems
|
||||
|
||||
A 2x2 system is one with 2 equations and 2 unknown variables.
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
\begin{align*}
|
||||
3x_1 + 4x_2 &= 2 &\text{(1)} \\
|
||||
x_1 + 2x_2 &= 0 &\text{(2)} \\
|
||||
\end{align*}
|
||||
|
||||
</summary>
|
||||
|
||||
\begin{align*}
|
||||
3\times\text{(2)} = 3x_1 + 6x_2 &= 0 &\text{(3)} \\
|
||||
\text{(3)} - \text{(1)} = 0x_1 + 2x_2 &= -2 \\
|
||||
x_2 &= -1
|
||||
\end{align*}
|
||||
|
||||
We've essentially created a 1x1 system for $x_2$ and now that's solved we can back substitute it
|
||||
into equation (1) (or equation (2), it doesn't matter) to work out the value of $x_1$:
|
||||
|
||||
\begin{align*}
|
||||
3x_1 + 4x_2 &= 2 \\
|
||||
3x_1 - 1 &= 2 \\
|
||||
3x_1 &= 6 \\
|
||||
x_1 &= 2
|
||||
\end{align*}
|
||||
|
||||
You can check the values for $x_1$ and $x_2$ are correct by substituting them into equation (2).
|
||||
|
||||
</details>
|
||||
|
||||
### 3x3 Systems
|
||||
|
||||
A 3x3 system is one with 3 equations and 3 unknown variables.
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
\begin{align*}
|
||||
2x_1 + 3x_2 - x_3 &= 5 &\text{(1)} \\
|
||||
4x_1 + 4x_2 - 3x_3 &= 5 &\text{(2)} \\
|
||||
2x_1 - 3x_2 + x_3 &= 5 &\text{(3)} \\
|
||||
\end{align*}
|
||||
|
||||
</summary>
|
||||
|
||||
The first step is to eliminate $x_1$ from (2) and (3) using (1):
|
||||
|
||||
\begin{align*}
|
||||
\text{(2)}-2\times\text{(1)} = -2x_2 -x_3 &= -1 &\text{(4)} \\
|
||||
\text{(3)}-\text{(1)} = -6x_2 + 3x_3 &= -6 &\text{(5)} \\
|
||||
\end{align*}
|
||||
|
||||
This has created a 2x2 system of $x_2$ and $x_3$ which can be solved as any other 2x2 system.
|
||||
I'm too lazy to type up the working, but it is solved like any other 2x2 system.
|
||||
|
||||
\begin{align*}
|
||||
x_2 &= -2
|
||||
x_3 &= 5
|
||||
\end{align*}
|
||||
|
||||
These values can be back-substituted into any of the first 3 equations to find out $x_1$:
|
||||
|
||||
\begin{align*}
|
||||
-2x_1 + 3x_2 - x_3 = 2x_1 + 6 - 3 = 5 \rightarrow x_1 = 1
|
||||
\end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 2
|
||||
|
||||
\begin{align*}
|
||||
x_1 + x_2 - 2x_3 &= 1 &R_1 \\
|
||||
2x_1 - x_2 - x_3 &= 1 &R_2 \\
|
||||
x_1 + 4x_2 + 7x_3 &= 2 &R_3 \\
|
||||
\end{align*}
|
||||
|
||||
</summary>
|
||||
|
||||
1. Eliminate $x_1$ from $R_2$, $R_3$:
|
||||
|
||||
\begin{align*}
|
||||
x_1 + x_2 - 2x_3 &= 1 &R_1' = R_1\\
|
||||
- 3x_2 - 5x_3 &= -1 &R_2' = R_2 - 2R_1 \\
|
||||
3x_2 + 5x_3 &= 1 &R_3' = R_3 - R_1 \\
|
||||
\end{align*}
|
||||
|
||||
We've created another 2x2 system of $R_2'$ and $R_3'$
|
||||
|
||||
2. Eliminate $x_2$ from $R_3''$
|
||||
|
||||
\begin{align*}
|
||||
x_1 + x_2 - 2x_3 &= 1 &R_1'' = R_1' = R_1\\
|
||||
- 3x_2 - 5x_3 &= -1 &R_2'' = R_2' = R_2 - 2R_1 \\
|
||||
0x_3 &= 0 &R_3'' = R_3 '+ R_2' \\
|
||||
\end{align*}
|
||||
|
||||
We can see that $x_3$ can be any number, so there are infinite solutions. Let:
|
||||
|
||||
$$x_3 = t$$
|
||||
|
||||
where $t$ can be any number
|
||||
|
||||
3. Substitute $x_3$ into $R_2''$:
|
||||
|
||||
$$R_2'' = -3x_2 - 5t = -1 \rightarrow x_2 = \frac 1 3 - \frac{5t} 3$$
|
||||
|
||||
4. Substitute $x_2$ and $x_3$ into $R_1''$:
|
||||
|
||||
$$R_1'' = x_1 + \frac 1 3 - \frac{5t} 3 + 2t = 1 \rightarrow x_1 = \frac 2 3 - \frac t 3$$
|
||||
|
||||
</details>
|
||||
|
||||
## Systems of Equations and Matrices
|
||||
|
||||
Many problems in engineering have a very large number of unknowns and equations to solve
|
||||
simultaneously.
|
||||
We can use matrices to solve these efficiently.
|
||||
|
||||
Take the following simultaneous equations::
|
||||
|
||||
\begin{align*}
|
||||
3x_1 + 4x_2 &= 2 &\text{(1)} \\
|
||||
x_1 + 2x_2 &= 0 &\text{(2)}
|
||||
\end{align*}
|
||||
|
||||
They can be represented by the following matrices:
|
||||
|
||||
\begin{align*}
|
||||
A &= \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} \\
|
||||
\pmb x &= \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\
|
||||
\pmb b &= \begin{pmatrix} 2 \\ 0 \end{pmatrix} \\
|
||||
\end{align*}
|
||||
|
||||
You can then express the system as:
|
||||
|
||||
$$A\pmb x = \pmb b$$
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### A 3x3 System as a Matrix
|
||||
|
||||
</summary>
|
||||
|
||||
\begin{align*}
|
||||
2x_1 + 3x_2 - x_3 &= 5 \\
|
||||
4x_1 + 4x_2 - 3x_3 &= 3 \\
|
||||
2x_1 - 3x_2 + x_3 &= -1
|
||||
\end{align*}
|
||||
|
||||
Could be expressed in the form $A\pmb x = \pmb b$ where:
|
||||
|
||||
\begin{align*}
|
||||
A &= \begin{pmatrix} 2 & 3 & -1 \\ 4 & 4 & -3 \\ 2 & -3 & -1 \end{pmatrix} \\
|
||||
\pmb x &= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\
|
||||
\pmb b &= \begin{pmatrix} 5 \\ 3 \\ -1 \end{pmatrix} \\
|
||||
\end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### An $m\times n$ System as a Matrix
|
||||
|
||||
</summary>
|
||||
|
||||
\begin{align*}
|
||||
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
|
||||
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
|
||||
\cdots \\
|
||||
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m \\
|
||||
\end{align*}
|
||||
|
||||
Could be expressed in the form $A\pmb x = \pmb b$ where:
|
||||
|
||||
\begin{align*}
|
||||
A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\
|
||||
a_{21} & a_{22} & \cdots & a_{2n} \\
|
||||
\vdots & & & \vdots \\
|
||||
a_{m1} & a_{m2} & \cdots & a_{mn}
|
||||
\end{pmatrix},
|
||||
\pmb x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},
|
||||
\pmb b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}
|
||||
\end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
# Matrices
|
||||
|
||||
## Order of a Matrix
|
||||
|
||||
The order of a matrix is its size e.g. $3\times2$ or $m\times n$
|
||||
|
||||
## Column Vectors
|
||||
|
||||
- Column vectors are matrices with only one column:
|
||||
|
||||
$$ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 45 \\ 12 \end{pmatrix} $$
|
||||
|
||||
- Column vector variables typed up or printed are expressed in $\pmb{bold}$ and when it is
|
||||
handwritten it is \underline{underlined}:
|
||||
|
||||
$$ \pmb x = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$
|
||||
|
||||
## Matrix Algebra
|
||||
|
||||
### Equality
|
||||
|
||||
Two matrices are the same if:
|
||||
|
||||
- Their order is the same
|
||||
- Their corresponding elements are the same
|
||||
|
||||
### Addition and Subtraction
|
||||
|
||||
Only possible if their order is the same.
|
||||
\begin{align*}
|
||||
A + B&= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\
|
||||
a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\
|
||||
\vdots & & & \vdots \\
|
||||
a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn}
|
||||
\end{pmatrix} \\
|
||||
A - B&= \begin{pmatrix} a_{11} - b_{11} & a_{12} - b_{12} & \cdots & a_{1n} - b_{1n} \\
|
||||
a_{21} - b_{21} & a_{22} - b_{22} & \cdots & a_{2n} - b_{2n} \\
|
||||
\vdots & & & \vdots \\
|
||||
a_{m1} - b_{m1} & a_{m2} - b_{m2} & \cdots & a_{mn} - b_{mn}
|
||||
\end{pmatrix},
|
||||
\end{align*}
|
||||
|
||||
### Zero Matrix
|
||||
|
||||
This is a matrix whose elements are all zeros.
|
||||
For any matrix $A$,
|
||||
|
||||
$$A + 0 =A$$
|
||||
|
||||
We can only add matrices of the same order, therefore 0 must be of the same order as $A$.
|
||||
|
||||
### Multiplication
|
||||
|
||||
Let
|
||||
|
||||
$$
|
||||
\begin{matrix}
|
||||
A & m\times n \\
|
||||
B & p\times q
|
||||
\end{matrix}
|
||||
$$
|
||||
|
||||
To be able to multiply $A$ by $B$, $n = p$.
|
||||
|
||||
If $n \ne p$, then $AB$ does not exist.
|
||||
|
||||
$$
|
||||
\begin{matrix}
|
||||
A & B & = & C \\
|
||||
m\times n & p \times q & & m\times q
|
||||
\end{matrix}
|
||||
$$
|
||||
|
||||
When $C = AB$ exists,
|
||||
|
||||
$$C_{ij} = \sum_r\! a_{ir}b_{rj}$$
|
||||
|
||||
That is, $C_{ij}$ is the 'product' of the $i$th row of $A$ and $j$th column of $B$.
|
||||
|
||||
#### Multiplication of a Matrix by a Scalar
|
||||
|
||||
If $\lambda$ is a scalar, we define
|
||||
|
||||
$$
|
||||
\lambda a = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\
|
||||
\lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\
|
||||
\vdots & & & \vdots \\
|
||||
\lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn}
|
||||
\end{pmatrix},
|
||||
$$
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
</summary>
|
||||
|
||||
$$
|
||||
\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}
|
||||
\begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix} =
|
||||
\begin{pmatrix} -3 & -1 \\ 3 & 4 \end{pmatrix}
|
||||
$$
|
||||
$$
|
||||
\begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}
|
||||
\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} =
|
||||
\begin{pmatrix} 2 & 1 \\ 7 & -1 \end{pmatrix}
|
||||
$$
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 2
|
||||
|
||||
</summary>
|
||||
|
||||
$$
|
||||
A = \begin{pmatrix} 4 & 1 & 6 \\ 3 & 2 & 1 \end{pmatrix},\,
|
||||
B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 0 \end{pmatrix}
|
||||
$$
|
||||
$$
|
||||
AB = \begin{pmatrix} 11 & 6 \\ 6 & 7 \end{pmatrix},\,
|
||||
BA = \begin{pmatrix} 7 & 3 & 7 \\ 10 & 5 & 8 \\ 4 & 1 & 6 \end{pmatrix}
|
||||
$$
|
||||
|
||||
</details>
|
||||
|
||||
### Other Properties of Matrix Algebra
|
||||
|
||||
- $(\lambda A)B = \lambda(AB) = A(\lambda B)$
|
||||
- $A(BC) = (AB)C = ABC$
|
||||
- $(A+B)C = AC + BC$
|
||||
- $C(A+B) = CA + CB$
|
||||
- In general, $AB \ne BA$ even if both exist
|
||||
- $AB = 0$ does not always mean $A = 0$ or $B = 0$:
|
||||
|
||||
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix}3 & 0 \\ 0 & 0 \end{pmatrix} =
|
||||
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$$
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
It follows that $AB = AC$ does not imply that $B=C$ as
|
||||
|
||||
$$AB = AC \leftrightarrow A(B + C) = 0$$
|
||||
|
||||
and as $A$ and $(B-C)$ are not necessarily 0, $B$ is not necessarily equal to $C$:
|
||||
|
||||
</summary>
|
||||
|
||||
$$AB = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix}0 & 0 \\ 1 & 0 \end{pmatrix} =
|
||||
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
|
||||
|
||||
and
|
||||
|
||||
$$AC = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix}1 & 2 \\ 1 & 0 \end{pmatrix} =
|
||||
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = AB$$
|
||||
|
||||
but $B \ne C$
|
||||
|
||||
</details>
|
||||
|
||||
## Special Matrices
|
||||
|
||||
### Square Matrix
|
||||
|
||||
Where $m = n$
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
A $3\times3$ matrix.
|
||||
|
||||
</summary>
|
||||
|
||||
$$\begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix}$$
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 2
|
||||
|
||||
A $2\times2$ matrix.
|
||||
|
||||
</summary>
|
||||
|
||||
$$\begin{pmatrix}1 & 2 \\ 4 & 5 \end{pmatrix}$$
|
||||
|
||||
</details>
|
||||
|
||||
### Identity Matrix
|
||||
|
||||
The identity matrix is a square matrix whose eleements are all 0, except the leading diagonal which
|
||||
is 1s.
|
||||
The leading diagonal is the top left to bottom right corner.
|
||||
|
||||
It is usually denoted by $I$ or $I_n$.
|
||||
|
||||
The identity matrix has the properties that
|
||||
|
||||
$$AI = IA = A$$
|
||||
|
||||
for any square matrix $A$ of the same order as I, and
|
||||
|
||||
$$Ix = x$$
|
||||
|
||||
for any vector $x$.
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
The $3\times3$ identity matrix.
|
||||
|
||||
</summary>
|
||||
|
||||
$$\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}$$
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 2
|
||||
|
||||
The $2\times2$ identity matrix.
|
||||
|
||||
</summary>
|
||||
|
||||
$$\begin{pmatrix}1 & 0 \\ 0 & 1 \end{pmatrix}$$
|
||||
|
||||
</details>
|
||||
|
||||
### Transposed Matrix
|
||||
|
||||
The transpose of matrix $A$ of order $m\times n$ is matrix $A^T$ which has the order $n\times m$.
|
||||
It is found by reflecting it along the leading diagonal, or interchanging the rows and columns of
|
||||
$A$.
|
||||
|
||||
](./images/Matrix_transpose.gif)
|
||||
|
||||
Let matrix $D = EF$, then $D^T = (EF)^T = E^TF^T$
|
||||
|
||||
#### Example 1
|
||||
|
||||
$$
|
||||
A = \begin{pmatrix}3 & 2 & 1 \\ 4 & 5 & 6 \end{pmatrix},\,
|
||||
A^T = \begin{pmatrix}3 & 4 \\ 2 & 5 \\ 1 & 6\end{pmatrix}
|
||||
$$
|
||||
|
||||
#### Example 2
|
||||
|
||||
$$
|
||||
B = \begin{pmatrix}1 \\ 4\end{pmatrix},\,
|
||||
B^T = \begin{pmatrix}1 & 4\end{pmatrix}
|
||||
$$
|
||||
|
||||
#### Example 3
|
||||
|
||||
$$
|
||||
C = \begin{pmatrix}1 & 2 & 3 \\ 0 & 5 & 1 \\ 2 & 3 & 7\end{pmatrix},\,
|
||||
C^T = \begin{pmatrix}1 & 0 & 2 \\ 2 & 5 & 4 \\ 3 & 1 & 7\end{pmatrix}
|
||||
$$
|
||||
|
||||
### Orthogonal Matrices
|
||||
|
||||
A matrix, $A$, such that
|
||||
|
||||
$$A^{-1} = A^T$$
|
||||
|
||||
is said to be orthogonal.
|
||||
|
||||
Another way to say this is
|
||||
|
||||
$$AA^T = A^TA = I$$
|
||||
|
||||
### Symmetric Matrices
|
||||
|
||||
A square matrix which is symmetric about its leading diagonal:
|
||||
|
||||
$$A = A^T$$
|
||||
|
||||
You can also express this as the matrix $A$, where
|
||||
|
||||
$$a_{ij} = a_{ji}$$
|
||||
|
||||
is satisfied to all elements.
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
</summary>
|
||||
|
||||
$$\begin{pmatrix}
|
||||
1 & 0 & -1 & 3 \\
|
||||
0 & 3 & 4 & -1 \\
|
||||
-2 & 4 & -1 & 6 \\
|
||||
3 & -7 & 6 & 2
|
||||
\end{pmatrix}$$
|
||||
|
||||
</details>
|
||||
|
||||
### Anti-Symmetric
|
||||
|
||||
A square matrix is anti-symmetric if
|
||||
|
||||
$$A = -A^T$$
|
||||
|
||||
This can also be expressed as
|
||||
|
||||
$$a_{ij} = -a_{ji}$$
|
||||
|
||||
This means that all elements on the leading diagonal must be 0.
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
</summary>
|
||||
|
||||
$$\begin{pmatrix}
|
||||
0 & -1 & 5 \\
|
||||
1 & 0 & 1 \\
|
||||
-5 & -1 & 0
|
||||
\end{pmatrix}$$
|
||||
|
||||
</details>
|
||||
|
||||
## The Determinant
|
||||
|
||||
### Determinant of a 2x2 System
|
||||
|
||||
The determinant of a $2x2$ system is
|
||||
|
||||
$$D = a_{11}a_{22} - a_{12}a_{21}$$
|
||||
|
||||
It is denoted by
|
||||
|
||||
$$
|
||||
\begin{vmatrix}
|
||||
a_{11} & a_{12} \\
|
||||
a_{21} & a_{22}
|
||||
\end{vmatrix}
|
||||
\text{ or }
|
||||
\det
|
||||
\begin{pmatrix}
|
||||
a_{11} & a_{12} \\
|
||||
a_{21} & a_{22}
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
- A system of equations has a unique solution if $D \ne 0$
|
||||
- If $D = 0$, then there are either
|
||||
|
||||
- no solutions (the equations are inconsistent)
|
||||
- intinitely many solutions
|
||||
|
||||
### Determinant of a 3x3 System
|
||||
|
||||
Let
|
||||
|
||||
$$
|
||||
A = \begin{pmatrix}
|
||||
a_{11} & a_{12} & a_{13} \\
|
||||
a_{21} & a_{22} & a_{23} \\
|
||||
a_{31} & a_{32} & a_{33}
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
\begin{align*}
|
||||
\det A = &a_{11} \times \det \begin{pmatrix}a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} \\
|
||||
&-a_{12} \times \det \begin{pmatrix}a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} \\
|
||||
&+a_{13} \times \det \begin{pmatrix}a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}
|
||||
\end{align*}
|
||||
|
||||
The $2x2$ matrices above are created by removing any elements on the same row or column as its corresponding
|
||||
coefficient:
|
||||
|
||||

|
||||
|
||||
### Chessboard Determinant
|
||||
|
||||
$\det A$ may be obtained by expanding out any row or column.
|
||||
To figure out which coefficients should be subtracted and which ones added use the chessboard
|
||||
pattern of signs:
|
||||
|
||||
$$\begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$$
|
||||
|
||||
### Properties of Determinants
|
||||
|
||||
- $$\det A = \det A^T$$
|
||||
- If all elements of one row of a matrix are multiplied by a constant $z$, the determinant of the
|
||||
new matrix is $z$ times the determinant of the original matrix:
|
||||
|
||||
\begin{align*}
|
||||
\begin{vmatrix} za & zb \\ c & d \end{vmatrix} &= zad - zbc \\
|
||||
&= z(ad-bc) \\
|
||||
&= z\begin{vmatrix} a & b \\ c & d \end{vmatrix}
|
||||
\end{align*}
|
||||
|
||||
This is also true if a column of a matrix is mutiplied by a constant.
|
||||
|
||||
**Application** if the fator $z$ appears in each elements of a row or column of a determinant it
|
||||
can be factored out
|
||||
|
||||
$$\begin{vmatrix}2 & 12 \\ 1 & 3 \end{vmatrix} = 2\begin{vmatrix}1 & 6 \\ 1 & 3 \end{vmatrix} = 2 \times 3
|
||||
\begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix}$$
|
||||
|
||||
**Application** if all elements in one row or column of a matrix are zero, the value of the
|
||||
determinant is 0.
|
||||
|
||||
$$\begin{vmatrix} 0 & 0 \\ c & d \end{vmatrix} = 0\times d - 0\times c = 0$$
|
||||
|
||||
|
||||
**Application** if $A$ is an $n\times n$ matrix,
|
||||
|
||||
$$\det(zA) = z^n\det A$$
|
||||
|
||||
- Swapping any two rows or columns of a matrix changes the sign of the determinant
|
||||
|
||||
\begin{align*}
|
||||
\begin{vmatrix} c & d \\ a & b \end{vmatrix} &= cb - ad \\
|
||||
&= -(ad - bc) \\
|
||||
&= -\begin{vmatrix} a & b \\ c & d \end{vmatrix}
|
||||
\end{align*}
|
||||
|
||||
**Application** If any two rows or two columns are identical, the determinant is zero.
|
||||
|
||||
**Application** If any row is a mutiple of another, or a column a multiple of another column, the
|
||||
determinant is zero.
|
||||
|
||||
- The value of a determinant is unchanged by adding to any row a constant multiple of another row,
|
||||
or adding to any column a constant multiple of another column
|
||||
|
||||
- If $A$ and $B$ are square matrices of the same order then
|
||||
|
||||
$$\det(AB) = \det A \times \det B $$
|
||||
|
||||
## Inverse of a Matrix
|
||||
|
||||
If $A$ is a square matrix, then its inverse matrix is $A^{-1}$ and is defined by the property that:
|
||||
|
||||
$$A^{-1}A = AA^{-1} = I$$
|
||||
|
||||
- Not every matrix has an inverse
|
||||
- If the inverse exists, then it is very useful for solving systems of equations:
|
||||
|
||||
\begin{align*}
|
||||
A\pmb{x} = \pmb b \rightarrow A^{-1}A\pmb x &= A^{-1}\pmb b \\
|
||||
I\pmb x &= A^{-1}\pmb b \\
|
||||
\pmb x &= A^{-1}\pmb b
|
||||
\end{align*}
|
||||
|
||||
Therefore there must be a unique solution to $A\pmb x = \pmb b$: $\pmb x = A^{-1}\pmb b$.
|
||||
|
||||
- If $D = EF$ then
|
||||
|
||||
$$D^-1 = (EF)^{-1} = F^{-1}E^{-1}$$
|
||||
|
||||
### Inverse of a 2x2 Matrix
|
||||
|
||||
If $A$ is the $2x2$ matrix
|
||||
|
||||
$$
|
||||
A = \begin{pmatrix}
|
||||
a_{11} & a_{12} \\
|
||||
a_{21} & a_{22}
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
and its determinant, $D$, satisfies $D \ne 0$, $A$ has the inverse $A^{-1}$ given by
|
||||
|
||||
$$
|
||||
A^{-1} = \frac 1 D \begin{pmatrix}
|
||||
a_{22} & -a_{12} \\
|
||||
-a_{21} & a_{11}
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
If $D = 0$, then matrix $A$ has no inverse.
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
Find the inverse of matrix $A = \begin{pmatrix} -1 & 5 \\ 2 & 3 \end{pmatrix}$.
|
||||
|
||||
</summary>
|
||||
|
||||
1. Calculate the determinant
|
||||
|
||||
$$\det A = -1 \times 3 - 5 \times 2 = -13$$
|
||||
|
||||
Since $\det A \ne 0$, the inverse exists.
|
||||
|
||||
2. Calculate $A^{-1}$
|
||||
|
||||
$$ A^{-1} = \frac 1 {-13} \begin{pmatrix} 3 & -5 \\ -2 & -1\end{pmatrix}$$
|
After Width: | Height: | Size: 26 KiB |
After Width: | Height: | Size: 95 KiB |
After Width: | Height: | Size: 109 KiB |
After Width: | Height: | Size: 40 KiB |
After Width: | Height: | Size: 15 KiB |
After Width: | Height: | Size: 40 KiB |
After Width: | Height: | Size: 105 KiB |
After Width: | Height: | Size: 63 KiB |
After Width: | Height: | Size: 23 KiB |
After Width: | Height: | Size: 65 KiB |
After Width: | Height: | Size: 22 KiB |
After Width: | Height: | Size: 77 KiB |
After Width: | Height: | Size: 53 KiB |
After Width: | Height: | Size: 54 KiB |
After Width: | Height: | Size: 46 KiB |
After Width: | Height: | Size: 18 KiB |
After Width: | Height: | Size: 26 KiB |
After Width: | Height: | Size: 105 KiB |
After Width: | Height: | Size: 44 KiB |
After Width: | Height: | Size: 29 KiB |
After Width: | Height: | Size: 39 KiB |
After Width: | Height: | Size: 45 KiB |
After Width: | Height: | Size: 56 KiB |
After Width: | Height: | Size: 54 KiB |
After Width: | Height: | Size: 66 KiB |
After Width: | Height: | Size: 76 KiB |
After Width: | Height: | Size: 111 KiB |
After Width: | Height: | Size: 128 KiB |
578
uni/mmme/1028_statics_and_dynamics/statics.md
Executable file
@@ -0,0 +1,578 @@
|
||||
---
|
||||
author: Alvie Rahman
|
||||
date: \today
|
||||
tags:
|
||||
- uni
|
||||
- nottingham
|
||||
- mechanical
|
||||
- engineering
|
||||
- mmme1028
|
||||
- maths
|
||||
- statics
|
||||
- dynamics
|
||||
title: MMME1028 // Statics
|
||||
---
|
||||
|
||||
# Lecture L1.1, L1.2
|
||||
|
||||
### Lecture L1.1 Exercises
|
||||
|
||||
Can be found [here](./lecture_exercises/mmme1028_l1.1_exercises_2021-09-30.pdf).
|
||||
|
||||
### Lecture L1.2 Exercises
|
||||
|
||||
Can be found here [here](./lecture_exercises/mmme1028_l1.2_exercises_2021-10-04.pdf)
|
||||
|
||||
## Newton's Laws
|
||||
|
||||
1. Remains at constant velocity unless acted on by external force
|
||||
|
||||
2. Sum of forces on body is equal to mass of body multiplied by
|
||||
acceleration
|
||||
|
||||
> 1st Law is a special case of 2nd
|
||||
|
||||
3. When one body exerts a force on another, 2nd body exerts force
|
||||
simultaneously of equal magnitude and opposite direction
|
||||
|
||||
## Equilibrium
|
||||
|
||||
- Body is in equilibrium if sum of all forces and moments acting on
|
||||
body are 0
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example
|
||||
|
||||
Determine force $F$ and $x$ so that the body is in equilibrium.
|
||||
|
||||
</summary>
|
||||
|
||||

|
||||
|
||||
1. Check horizontal equilibrium
|
||||
|
||||
$\sum{F_x} = 0$
|
||||
|
||||
2. Check vertical equilibrium
|
||||
|
||||
$\sum{F_y} = 8 - 8 + F = 0$
|
||||
|
||||
$F = 2$
|
||||
|
||||
3. Take moments about any point
|
||||
|
||||
$\sum{M(A)} = 8\times{}2 - F(2+x) = 0$
|
||||
|
||||
$F(2+x) = 16)$
|
||||
|
||||
$x = 6$
|
||||
|
||||
</details>
|
||||
|
||||
## Free Body Diagrams
|
||||
|
||||
A free body diagram is a diagram of a single (free) body which shows all
|
||||
the external forces acting on the body.
|
||||
|
||||
Where there are several bodies or subcomponents interacting as a complex
|
||||
system, each body is drawn separately:
|
||||
|
||||

|
||||
|
||||
## Friction
|
||||
|
||||
- Arises between rough surfaces and always acts at right angles to the
|
||||
normal reaction force ($R$) in the direction to resist motion.
|
||||
- The maximum value of friction $F$ is $F_{max} = \mu{}R$, where
|
||||
$\mu{}$ is the friction coefficient
|
||||
- $F_{max}$ is also known as the point of slip
|
||||
|
||||
## Reactions at Supports
|
||||
|
||||
There are three kinds of supports frequently encountered in engineering
|
||||
problems:
|
||||
|
||||

|
||||
|
||||
## Principle of Force Transmissibility
|
||||
|
||||
A force can be move dalong line of action without affecting equilibrium
|
||||
of the body which it acts on:
|
||||
|
||||

|
||||
|
||||
This principle can be useful in determining moments.
|
||||
|
||||
## Two-Force Bodies
|
||||
|
||||
- If a body has only 2 forces, then the forces must be collinear,
|
||||
equal, and opposite:
|
||||
|
||||

|
||||
|
||||
> The forces must be collinear so a moment is not created
|
||||
|
||||
## Three-Force Bodies
|
||||
|
||||
- If a body in equilibrium has only three forces acting on it, then
|
||||
the lines of actions must go through one point:
|
||||
|
||||

|
||||
|
||||
> This is also to not create a moment
|
||||
|
||||
- The forces must form a closed triangle ($\sum{F} = 0$)
|
||||
|
||||
## Naming Conventions
|
||||
|
||||
| Term | Meaning |
|
||||
|----------------------|----------------------------------------------------------|
|
||||
| light | no mass |
|
||||
| heavy | body has mass |
|
||||
| smooth | there is no friction |
|
||||
| rough | contact has friction |
|
||||
| at the point of slip | one tangential reaction is $F_{max}$ |
|
||||
| roller | a support only creating normal reaction |
|
||||
| rigid pin | a support only providing normal and tangential reactions |
|
||||
| built-in | a support proviting two reaction components and a moment |
|
||||
|
||||
## Tips to Solve (Difficult) Problems
|
||||
|
||||
1. Make good quality clear and big sketches
|
||||
2. Label all forces, dimensions, relevant points
|
||||
3. Explain and show your thought process---write complete equations
|
||||
4. Follow standard conventions in equations and sketches
|
||||
5. Solve everything symbolically (algebraicly) until the end
|
||||
6. Check your answers make sense
|
||||
7. Don't forget the units
|
||||
|
||||
# Lecture L1.4
|
||||
|
||||
## Tension and Compression
|
||||
|
||||
- The convention in standard mechanical engineering problems is that positive values are for
|
||||
tension and negative values for compression
|
||||
- Members in tension can be replaces by cables, which can support tension but not compression
|
||||
- Resisting compression is harder as members in compression can buckle
|
||||
|
||||
## What is a Pin Joint?
|
||||
|
||||
- Pin jointed structures are structures where joints are pinned (free to rotate)
|
||||
- Pin joints are represented by a circle (pin) about which members are free to rotate:
|
||||
|
||||

|
||||
|
||||
- A pin joint transmits force but cannot carry a moment
|
||||
|
||||
## What is a Truss?
|
||||
|
||||
- Trusses are an assembly of many bars, which are pin jointed in design but do not rotate due to
|
||||
the geometry of the design. A pylon is a good example of this
|
||||
- Trusses are used in engineering to transfer forces through a structure
|
||||
- When pin jointed trusses are loaded at the pins, the bars are subjected to pure tensile or
|
||||
compressive forces.
|
||||
|
||||
These bars are two force members
|
||||
|
||||
## Equilibrium at the Joints
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
### Forces at A
|
||||
|
||||
$$\sum F_y(A) = \frac P 2 + T_{AB}\sin{\frac \pi 4} = 0 \rightarrow T_{AB} = -\frac P 2$$
|
||||
|
||||
\begin{align*}
|
||||
\sum F_x(A) &= T_{AB}\cos{\frac pi 4} + T_{AC} = 0 \\
|
||||
T_AC &= -\frac{-P} 2 \times \frac{\sqrt{2}} 2 = \frac P 2
|
||||
\end{align*}
|
||||
|
||||
### Forces at B
|
||||
|
||||
Add the information we just obtained from calculating forces at A:
|
||||
|
||||

|
||||
|
||||
And draw a free body diagram for the forces at B:
|
||||
|
||||

|
||||
|
||||
$$
|
||||
\sum F_y(B) = -\frac{-P} 2 \sin{\frac \pi 4} - T_{BC} = 0 \rightarrow
|
||||
T_{BC} = \frac P {\sqrt 2} \times \frac {\sqrt 2} 2 = \frac P 2
|
||||
$$
|
||||
|
||||
\begin{align*}
|
||||
\sum F_x(B) &= -\frac{-P}{\sqrt2}\cos{\frac \pi 4} + T_{BD} = 0 \\
|
||||
T_{BD} &= -\frac P 2
|
||||
\end{align*}
|
||||
|
||||
## Symmetry in Stuctures
|
||||
|
||||
Symmetry of bar forces in a pin jointed frame depends on to aspects:
|
||||
|
||||
1. Symmetry of the stucture
|
||||
2. Symmetry of the loading (forces applied)
|
||||
|
||||
Both conditions must be met to exploit symmetry.
|
||||
|
||||
# Lecture L1.5, L1.6
|
||||
|
||||
## Method of Sections
|
||||
|
||||
The method of sections is very useful to find a few forces inside a complex structure.
|
||||
|
||||
If an entire section is in equilibrium, so are discrete parts of the same structure.
|
||||
This means we an isolate substructures and draws free body diagrams for them.
|
||||
|
||||
We must add all the forces acting on the substructure.
|
||||
Then we make a virtua cut through some of the members, replacing them with forces.
|
||||
|
||||
Then we can write 3 equilibrium equations for the substructure:
|
||||
|
||||
1. 1 Horizontal, 1 vertical, and 1 moment equation
|
||||
2. Either horizonal or vertical and 2 moment equations
|
||||
3. 3 moment equations
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example 1
|
||||
|
||||
</summary>
|
||||
|
||||
Draw a virtual cut through the structure, making sure to cut through all the bars whose forces
|
||||
you are trying to find:
|
||||
|
||||

|
||||
|
||||
Draw the free body diagram, substituting cut bars by forces:
|
||||
|
||||

|
||||
|
||||
As there are three unknown forces, we need three equilibrium equations.
|
||||
|
||||
#### First Equation: Moments about E
|
||||
|
||||
\begin{align*}
|
||||
\sum M(E) &= \frac P 2 \times 2L + T_{DF}L = 0 \\
|
||||
T_{DF} &= -P
|
||||
\end{align*}
|
||||
|
||||
#### Second Equation: Vertical Equilibrium
|
||||
|
||||
\begin{align*}
|
||||
\sum F_y &= \frac P 2 + T_{EF}\sin{\frac \pi 4} = 0 \\
|
||||
T_{EF} &= -\frac P {\sqrt2}
|
||||
\end{align*}
|
||||
|
||||
#### Third Equation: Horizontal Equilibrium
|
||||
|
||||
\begin{align*}
|
||||
\sum F_x = T_{DF} + T_{EF}\cos{\frac \pi 4} + T_{EG} = 0 \\
|
||||
T_{EG} = \frac {3P} 2
|
||||
\end{align*}
|
||||
|
||||
#### Taking Moments from Outside the Structure
|
||||
|
||||
If we only needed EG, we could have taken moments about point F, outside our substructure:
|
||||
|
||||

|
||||
|
||||
\begin{align*}
|
||||
\sum M(F) &= \frac P 2 \times 3L -T_{EG}L = 0 \\
|
||||
T_{EG} &= \frac {3P} 2
|
||||
\end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
## Zero-Force Members
|
||||
|
||||

|
||||
|
||||
Consider the free body diagram for the joint at G:
|
||||
|
||||

|
||||
|
||||
$$\sum F_y(G) = T_{FG} = 0$$
|
||||
$$\sum F_x(G) = -T_{EG} + T_{GJ} = 0 \rightarrow T_{EG} = T_{GJ}$$
|
||||
|
||||
Meaning that the structure is effecively the same as this one:
|
||||
|
||||

|
||||
|
||||
Why was it there?
|
||||
|
||||
- The structure may be designed for other loading patterns
|
||||
- The bar may prevent the struture from becoming a mechanism
|
||||
- A zero force member may also be there to prevent buckling
|
||||
|
||||
## Externally Applied Moments
|
||||
|
||||
Externally applied moments are dealt with in the same way as external forces, but they only
|
||||
contribute to moment equations and not force equilibrium equations.
|
||||
|
||||
## Distributed Load
|
||||
|
||||
A distriuted load is applied uniformly to a bar or section of a bar.
|
||||
|
||||
It can be represented by a single force through the midpoint its midpoint.
|
||||
|
||||

|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example 1
|
||||
|
||||
</summary>
|
||||
|
||||

|
||||
|
||||
Is equivalent to:
|
||||
|
||||

|
||||
|
||||
</details>
|
||||
|
||||
## Equivalent Loads
|
||||
|
||||
When loads are applied within a bar, as far as support reactions and bar forces in *other* bars
|
||||
are concered, we can determine *equivalent node forces* using equilibrium
|
||||
|
||||

|
||||
|
||||
# Lecture L1.6
|
||||
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example 1
|
||||
|
||||
The figure shows a light roof truss loaded by a force $F = 90$ kN at 45\textdegree to the horizontal
|
||||
at point $B$.
|
||||
|
||||
</summary>
|
||||
|
||||

|
||||
|
||||
a. Find the reaction forces at A and D using equilibrium applied to the whole structure.
|
||||
|
||||
> 1. Add unknown quantities to the diagram
|
||||
>
|
||||
> 
|
||||
>
|
||||
> 2. Consider the number of unknowns --- there are 3 therefore 3 equations are needed
|
||||
> 3. Decide which equilibrium equation to start with
|
||||
>
|
||||
> Horizontal equilibrium:
|
||||
>
|
||||
> \begin{align*}
|
||||
\sum F_x &= R_{Ax} - F\cos45 = 0 \\
|
||||
R_{Ax} &= 63.6\text{ kN}
|
||||
> \end{align*}
|
||||
>
|
||||
> Vertical equilibrium:
|
||||
>
|
||||
> \begin{align*}
|
||||
\sum F_y &= R_{Ay} + R_{Dy} - F\sin = 0 \\
|
||||
R_{Ay} + R_{Dy} &= \frac{\sqrt2 F} 2
|
||||
> \end{align*}
|
||||
>
|
||||
> Moment equation:
|
||||
>
|
||||
> \begin{align*}
|
||||
> \sum M_{xy}(B) &= 4.5R_{Ay} - 4.5R_{Dy} - L_{BC}R_{Ax} = 0 \\
|
||||
> \frac{L_{BC}}{4.5} &= \tan30 = \frac 1 {\sqrt3} \rightarrow L_{BC} = 2.6 \\
|
||||
> \end{align*}
|
||||
>
|
||||
> 4. Solve for $R_{Ay}$
|
||||
>
|
||||
> \begin{align*}
|
||||
> 4.5R_{Ay} &= 4.5R_{Dy} + 2.6\times\frac{\sqrt2 F}{2} & R_{Dy} = \frac{\sqrt2 F}{2} - R_{Ay} \\
|
||||
> 4.5R_{Ay} &= 4.5\left(\frac{\sqrt2 F}{2} - R_{Ay}\right) + 2.6\times\frac{\sqrt2 F}{2} \\
|
||||
> R_{Ay} &= 0.56F = 50.2\text{ kN}
|
||||
> \end{align*}
|
||||
>
|
||||
> 5. Substitute to find $R_{Dy}$
|
||||
>
|
||||
> \begin{align*}
|
||||
> R_{Dy} = \frac{\sqrt2 F}{2} - R_{Ay} = (0.71-0.56)F = 13.3\text{ kN}\\
|
||||
> \end{align*}
|
||||
|
||||
|
||||
b. Use the graphical/trigonometric method o check your answer.
|
||||
|
||||
> Write the reaction at A as a single force with unknown direction:
|
||||
>
|
||||
> 
|
||||
>
|
||||
> When three forces act on an object in equilibrium, they must:
|
||||
>
|
||||
> 1. Make a triangle of forces
|
||||
> 2. Go through a single point
|
||||
>
|
||||
> So we can figure out the angle of $R_{A}$ by drawing it such that all the lines of action of
|
||||
> all forces go through the same point:
|
||||
>
|
||||
> 
|
||||
>
|
||||
> \begin{align*}
|
||||
L_{DE} &= L_{BC} = 2.6 \\
|
||||
L_{EG} &= \tan45\times L_{BE} = 4.5 \\
|
||||
L_{DE} &= 2.6+4.5 = 7.1 \\
|
||||
\\
|
||||
\tan\theta &= \frac{L_{DG}}{L_{AD}} = 0.79 \\
|
||||
\theta &= 38.27
|
||||
> \end{align*}
|
||||
>
|
||||
> Now draw the force triangle:
|
||||
>
|
||||
> 
|
||||
>
|
||||
> Using the sine rule we find out $R_A$ and $R_{Dy}$, which are $81.1$ kN and $13.4$ kN,
|
||||
> respectively.
|
||||
>
|
||||
> Now we can check our answers in part (a) and (b) are the same:
|
||||
>
|
||||
> - $R_{Dy} = 13.4$
|
||||
> - $R_{Ax} = 81.1\cos38.27 = 63.6$
|
||||
> - $R_{Ay} = 81.1\sin.27 = 50.2$
|
||||
>
|
||||
> The methods agree.
|
||||
|
||||
</details>
|
||||
|
||||
# Lecture L2.1
|
||||
|
||||
## Hooke's Law and Young's Modulus
|
||||
|
||||
Hooke's law states that the extension of an object experiencing a force is proportonal to the force.
|
||||
|
||||
We can generalize this to be more useful creating:
|
||||
|
||||
- Direct stress:
|
||||
|
||||
$$ \sigma = \frac F {A_0} $$
|
||||
|
||||
- Direct strain:
|
||||
|
||||
$$ \epsilon = \frac {\Delta L}{L_0} $$
|
||||
|
||||
Using these more generalized variables, Young defined Young's Modulus, $E$, which is a universal
|
||||
constant of stiffness of a material.
|
||||
|
||||
$$ \sigma = E\epsilon $$
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
Calculating Young's Modulus of a Piece of Silicone
|
||||
|
||||
</summary>
|
||||
|
||||
\begin{align*}
|
||||
L_0 &= 4.64 \\
|
||||
w_0 &= 0.10 \\
|
||||
t_0 &= 150\times10^{-6} \\
|
||||
F &= 1.40\times9.81 \\
|
||||
L &= 6.33 \\
|
||||
w &= 0.086 \\
|
||||
t &= 125\times10^{-6} \\
|
||||
\\
|
||||
\sigma &= \frac F {A_0} = \frac F {w_0t_0} = \frac{1.4\times9.81}{0.1\times150\times10^{-6}} = 915600 \\
|
||||
\epsilon &= \frac{\Delta L}{L_0} = \frac{6.33 - 4.64}{4.64} = 0.36422...\\
|
||||
E &= \frac \sigma \epsilon = 2513836.686 = 2.5\times10^6 \text{ Pa}
|
||||
\end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
## Stress Strain Curves
|
||||
|
||||

|
||||
|
||||
## Poisson's Ratio
|
||||
|
||||
For most materials, their cross sectionts change when they are stretched or compressed.
|
||||
This is to keep their volume constant.
|
||||
|
||||
$$ \epsilon_x = \frac {\Delta L}{L_0} $$
|
||||
$$ \epsilon_y = \frac {\Delta w}{w_0} $$
|
||||
$$ \epsilon_z = \frac {\Delta t}{t_0} $$
|
||||
|
||||
Poisson's ratio, $\nu$ (the greek letter _nu_, not v), is the ratio of lateral strain to axial
|
||||
strain:
|
||||
|
||||
$$ \nu = \frac{\epsilon_y}{\epsilon_x} = \frac{\epsilon_z}{\epsilon_x} $$
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
Measuring Poisson's Ratio
|
||||
|
||||
</summary>
|
||||
|
||||
\begin{align*}
|
||||
L_0 &= 4.64 \\
|
||||
w_0 &= 0.10 \\
|
||||
t_0 &= 150\times10^{-6} \\
|
||||
\\
|
||||
L &= 6.33 \\
|
||||
w &= 0.086 \\
|
||||
t &= 125\times10^{-6} \\
|
||||
\\
|
||||
\epsilon_x &= \frac {\Delta L}{L_0} = 0.364 \\
|
||||
\epsilon_y &= \frac {\Delta w}{w_0} = -0.14 \\
|
||||
\epsilon_z &= \frac {\Delta t}{t_0} = -0.167 \\
|
||||
\\
|
||||
\nu_y &= \frac{\epsilon_y}{\epsilon_x} = \frac{-0.14}{0.364} = -0.38 \\
|
||||
\nu_z &= \frac{\epsilon_z}{\epsilon_x} = \frac{-0.167}{0.364} = -0.46 \\
|
||||
\end{align*}
|
||||
|
||||
It's supposed to be that $\nu_y = \nu_z$ but I guess it's close enough right? lol
|
||||
|
||||
</details>
|
||||
|
||||
## Typical Values of Young's Modulus and Poisson's Ratio
|
||||
|
||||
Material | Young's Modulus / GPa | Poisson's Ratio
|
||||
-------- | --------------------- | ---------------
|
||||
Steel | 210 | 0.29
|
||||
Aluminum | 69 | 0.34
|
||||
Concrete | 14 | 0.1
|
||||
Nylon | 3 | 0.4
|
||||
Rubber | 0.01 | 0.495
|
||||
|
||||
## Direct Stresses and Shear Stresses
|
||||
|
||||

|
||||
|
||||
- A direct stress acts normal to the surface
|
||||
- A shear stress acts tangential to the surface
|
||||
|
||||
Shear stress is defined in the same way as direct stress but given the symbol $tau$ (tau):
|
||||
|
||||
$$ \tau = \frac F A $$
|
||||
|
||||
Shear strain is defined as the shear angle $\gamma$:
|
||||
|
||||
$$ \gamma \approx \tan\gamma = {\frac x {L_0}} $$
|
||||
|
||||
The shear modulus, $G$, is like Young's Modulus but for shear forces:
|
||||
|
||||
$$ \tau = G\gamma $$
|
||||
|
||||
## Relationship between Young's Modulus and Shear Modulus
|
||||
|
||||
$$ G = \frac E {2(1+\nu)} $$
|
||||
|
||||
$G \approx \frac E 3$ is a good approximation in a lot of engineering cases
|
After Width: | Height: | Size: 50 KiB |
After Width: | Height: | Size: 25 KiB |
After Width: | Height: | Size: 21 KiB |
After Width: | Height: | Size: 28 KiB |
After Width: | Height: | Size: 193 KiB |
After Width: | Height: | Size: 19 KiB |
After Width: | Height: | Size: 111 KiB |
After Width: | Height: | Size: 102 KiB |
After Width: | Height: | Size: 19 KiB |
After Width: | Height: | Size: 89 KiB |
After Width: | Height: | Size: 128 KiB |
After Width: | Height: | Size: 18 KiB |
After Width: | Height: | Size: 78 KiB |
After Width: | Height: | Size: 59 KiB |
After Width: | Height: | Size: 64 KiB |
After Width: | Height: | Size: 39 KiB |
After Width: | Height: | Size: 102 KiB |
After Width: | Height: | Size: 31 KiB |
After Width: | Height: | Size: 49 KiB |
After Width: | Height: | Size: 46 KiB |
After Width: | Height: | Size: 423 KiB |
After Width: | Height: | Size: 4.3 KiB |
After Width: | Height: | Size: 54 KiB |
After Width: | Height: | Size: 74 KiB |
After Width: | Height: | Size: 160 KiB |
After Width: | Height: | Size: 86 KiB |
After Width: | Height: | Size: 82 KiB |
After Width: | Height: | Size: 9.4 KiB |
After Width: | Height: | Size: 20 KiB |
After Width: | Height: | Size: 55 KiB |
After Width: | Height: | Size: 26 KiB |