big rename
This commit is contained in:
174
uni/mmme/1026_maths_for_engineering/calculus.md
Executable file
174
uni/mmme/1026_maths_for_engineering/calculus.md
Executable file
@@ -0,0 +1,174 @@
|
||||
---
|
||||
author: Alvie Rahman
|
||||
date: \today
|
||||
title: MMME1026 // Calculus
|
||||
tags: [ uni, nottingham, mechanical, engineering, mmme1026, maths, calculus ]
|
||||
---
|
||||
|
||||
# Calculus of One Variable Functions
|
||||
|
||||
## Key Terms
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Function
|
||||
|
||||
A function is a rule that assigns a **unique** value $f(x)$ to each value $x$ in a given *domain*.
|
||||
|
||||
</summary>
|
||||
|
||||
The set of value taken by $f(x)$ when $x$ takes all possible value in the domain is the *range* of
|
||||
$f(x)$.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Rational Functions
|
||||
|
||||
A function of the type
|
||||
|
||||
$$ \frac{f(x)}{g(x)} $$
|
||||
|
||||
</summary>
|
||||
|
||||
where $f$ and $g$ are polynomials, is called a rational function.
|
||||
|
||||
Its range has to exclude all those values of $x$ where $g(x) = 0$.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Inverse Functions
|
||||
|
||||
Consider the function $f(x) = y$.
|
||||
If $f$ is such that for each $y$ in the range there is exactly one $x$ in the domain,
|
||||
we can define the inverse $f^{-1}$ as:
|
||||
|
||||
$$f^{-1}(y) = f^{-1}(f(x)) = x$$
|
||||
|
||||
</summary>
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Limits
|
||||
|
||||
Consider the following:
|
||||
|
||||
$$f(x) = \frac{\sin x}{x}$$
|
||||
|
||||
The value of the function can be easily calculated when $x \neq 0$, but when $x=0$, we get the
|
||||
expression $\frac{\sin 0 }{0}$.
|
||||
However, when we evaluate $f(x)$ for values that approach 0, those values of $f(x)$ approach 1.
|
||||
|
||||
This suggests defining the limit of a function
|
||||
|
||||
$$\lim_{x \rightarrow a} f(x)$$
|
||||
|
||||
to be the limiting value, if it exists, of $f(x)$ as $x$ gets approaches $a$.
|
||||
|
||||
</summary>
|
||||
|
||||
#### Limits from Above and Below
|
||||
|
||||
Sometimes approaching 0 with small positive values of $x$ gives you a different limit from
|
||||
approaching with small negative values of $x$.
|
||||
|
||||
The limit you get from approaching 0 with positive values is known as the limit from above:
|
||||
|
||||
$$\lim_{x \rightarrow a^+} f(x)$$
|
||||
|
||||
and with negative values is known as the limit from below:
|
||||
|
||||
$$\lim_{x \rightarrow a^-} f(x)$$
|
||||
|
||||
If the two limits are equal, we simply refer to the *limit*.
|
||||
|
||||
|
||||
</details>
|
||||
|
||||
## Important Functions
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Exponential Functions
|
||||
|
||||
$$f(x) = e^x = \exp x$$
|
||||
|
||||
</summary>
|
||||
|
||||
It can also be written as an infinite series:
|
||||
|
||||
$$\exp x = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + ...$$
|
||||
|
||||
The two important limits to know are:
|
||||
|
||||
- as $x \rightarrow + \infty$, $\exp x \rightarrow +\infty$ ($e^x \rightarrow +\infty$)
|
||||
- as $x \rightarrow -\infty$, $\exp x \rightarrow 0$ ($e^x \rightarrow 0$)
|
||||
|
||||
Note that $e^x > 0$ for all real values of $x$.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Hyperbolic Functions (sinh and cosh)
|
||||
|
||||
The hyperbolic sine ($\sinh$) and hyperbolic cosine function ($\cosh$) are defined by:
|
||||
|
||||
$$\sinh x = \frac 1 2 (e^x - e^{-x}) \text{ and } \cosh x = \frac 1 2 (e^x + e^{-x})$$
|
||||
$$\tanh = \frac{\sinh x}{\cosh x}$$
|
||||
|
||||
</summary>
|
||||
|
||||
](./images/Sinh_cosh_tanh.svg)
|
||||
|
||||
Some key facts about these functions:
|
||||
|
||||
- $\cosh$ has even symmetry and $\sinh$ and $\tanh$ have odd symmetry
|
||||
- as $x \rightarrow + \infty$, $\cosh x \rightarrow +\infty$ and $\sinh x \rightarrow +\infty$
|
||||
- $\cosh^2x - \sinh^2x = 1$
|
||||
- $\tanh$'s limits are -1 and +1
|
||||
- Derivatives:
|
||||
- $\frac{\mathrm{d}}{\mathrm{d}x} \sinh x = \cosh x$
|
||||
- $\frac{\mathrm{d}}{\mathrm{d}x} \cosh x = \sinh x$
|
||||
- $\frac{\mathrm{d}}{\mathrm{d}x} \tanh x = \frac{1}{\cosh^2x}$
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Natural Logarithm
|
||||
|
||||
$$\ln{e^y} = \ln{\exp y} = y$$
|
||||
|
||||
</summary>
|
||||
|
||||
Since the exponential of any real number is positive, the domain of $\ln$ is $x > 0$.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Implicit Functions
|
||||
|
||||
An implicit function takes the form
|
||||
|
||||
$$f(x, y) = 0$$
|
||||
|
||||
</summary>
|
||||
|
||||
To draw the curve of an implicit function you have to rewrite it in the form $y = f(x)$.
|
||||
There may be more than one $y$ value for each $x$ value.
|
||||
|
||||
</details>
|
Reference in New Issue
Block a user