add notes, slides, lecture notes on fea
This commit is contained in:
parent
4e51f23dca
commit
578045b849
193
uni/mmme/3086_computer_modelling_techniques/fea.md
Executable file
193
uni/mmme/3086_computer_modelling_techniques/fea.md
Executable file
@ -0,0 +1,193 @@
|
||||
---
|
||||
author: Akbar Rahman
|
||||
date: \today
|
||||
title:
|
||||
tags: []
|
||||
uuid: 8f32c8c0-5ed4-49ab-aca8-e5e058262580
|
||||
lecture_slides: [ ./lecture_slides/fea ]
|
||||
lecture_notes: [ ./lecture_notes/fea ]
|
||||
exercise_sheets: []
|
||||
---
|
||||
|
||||
# MMME3086 Content
|
||||
|
||||
1. Direct and Energy based formulation of 1d elements (*stiffness matrices*)
|
||||
1. Assembly of stiffness matrices to form the *global stiffness matrix*
|
||||
1. 2d pin jointed structures
|
||||
1. continuum elements
|
||||
1. structural elements
|
||||
1. practical FEA guidelines
|
||||
|
||||
## Coursework
|
||||
|
||||
- Worth 35% of module
|
||||
- Will be set on 2023-11-09
|
||||
- Will be due on 2023-11-23
|
||||
|
||||
# Background (Slides 0101)
|
||||
|
||||
- domain is discretised into *finite elements*
|
||||
- each element is defined by its corners (*nodes*)
|
||||
- typical shapes for elements are triangular/quadrilaterals in 2d problems or
|
||||
tetrahedral/hexahedral in 3d problems
|
||||
- for each element, the behaviour is described by the displacements of the nodes and material law
|
||||
(stress strain relationships)
|
||||
|
||||
- this is usually expressed as the *stiffness* of the element
|
||||
|
||||
- elements are assembled in a mesh and the requirements of continuity and equilibrium between
|
||||
neighbouring elements are satisfied
|
||||
|
||||
- this assembly process results in a large system of simultaneous equations
|
||||
|
||||
- boundary conditions are applied to assembly of elements, to yield a unique solution to the
|
||||
overall system
|
||||
- solution matrices are sparsely populated
|
||||
- equations are solved numerically to compute the displacements at each node
|
||||
|
||||
- the displacements of each node can be used to obtain the stresses in each element
|
||||
|
||||
- finite element method is suitable for practical engineering stress analysis of complex geometries
|
||||
- to obtain good accuracy in regions of rapidly changing variables, a large number of small (*fine*)
|
||||
elements must be used
|
||||
|
||||
## Basic Overview of the Steps Required for FEA
|
||||
|
||||
1. Discretise the domain
|
||||
1. Write the element stiffness matrices
|
||||
1. Assemble the global stiffness matrix
|
||||
1. Apply boundary conditions
|
||||
1. Solve matrix
|
||||
1. Post-processing---e.g. obtaining additional information like reaction forces and element stresses
|
||||
|
||||
# Stress Analysis Fundamentals (Slides 0102)
|
||||
|
||||
## Uniaxial Loading
|
||||
|
||||
- The engineering definitions for engineering stress and strain assumes that stress is uniform,
|
||||
but this is rarely true over large areas.
|
||||
- However the definition gets more useful for small elements:
|
||||
|
||||
\begin{equation}
|
||||
\sigma = \lim_{\delta A \rightarrow 0} \sigma_\text{engineering}
|
||||
\end{equation}
|
||||
|
||||
- For uniaxial loading situations, *engineering (nominal) strain* is:
|
||||
|
||||
\begin{equation}
|
||||
\varepsilon_\text{engineering} = \frac{\Delta L}{L_0}
|
||||
\end{equation}
|
||||
|
||||
- For uniaxial loading situations, *engineering (nominal) stress* is:
|
||||
|
||||
\begin{equation}
|
||||
\sigma_\text{engineering} = \frac{F}{A_0}A
|
||||
\end{equation}
|
||||
|
||||
## Multi-Axial (3D) Stress and Strain Definitions
|
||||
|
||||
- In Cartesian axes system, are six components of stresses on the elements:
|
||||
|
||||
- *direct stresses* $\sigma_{xx}$, $\sigma_{yy}$, $\sigma_{zz}$ (tensile/compressive stresses)
|
||||
caused by forces normal to the area
|
||||
- *shear stresses* $\sigma_{xy}$, $\sigma_{xz}$, $\sigma_{yz}$ caused by shear forces parallel to
|
||||
the area
|
||||
|
||||
- the first subscript refers to the direction of the outward normal to the plane the stress is
|
||||
acting on
|
||||
- the second subscript refers to the direction of the stress
|
||||
|
||||
- The stress and strain vectors can be expressed as the following:
|
||||
|
||||
\begin{equation}
|
||||
\pmb \sigma = \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{xy} \\ \sigma_{xz} \\ \sigma_{yz} \end{bmatrix}
|
||||
\pmb \varepsilon = \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \varepsilon_{xy} \\ \varepsilon_{xz} \\ \varepsilon_{yz} \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
where:
|
||||
|
||||
\begin{align*}
|
||||
\sigma_{xx} &= \frac{\partial u_x}{\partial x} \\
|
||||
\sigma_{xx} &= \frac{\partial u_x}{\partial x} \\
|
||||
\sigma_{xx} &= \frac{\partial u_x}{\partial x} \\
|
||||
\varepsilon_{xy} &= \frac12 \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x}\right) \\
|
||||
\varepsilon_{xz} &= \frac12 \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x}\right) \\
|
||||
\varepsilon_{yz} &= \frac12 \left(\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y}\right)
|
||||
\end{align*}
|
||||
|
||||
- In computation mechanics, the stress and strain relation is modelled as:
|
||||
|
||||
\begin{equation}
|
||||
\pmb \sigma = \pmb d \pmb \varepsilon
|
||||
\end{equation}
|
||||
|
||||
### Stress-Strain Relationship (Hooke's Law)
|
||||
|
||||
- Hooke's law can be used to create the following stress-strain relations for isotropic linear
|
||||
elastic materials with thermal strain:
|
||||
|
||||
\begin{align}
|
||||
\varepsilon_{xx} &= \frac 1 E \left( \sigma_{xx} - \nu\left(\sigma_{yy} + \sigma_{zz}\right)\right) + \alpha\Delta T \\
|
||||
\varepsilon_{yy} &= \frac 1 E \left( \sigma_{yy} - \nu\left(\sigma_{xx} + \sigma_{zz}\right)\right) + \alpha\Delta T \\
|
||||
\varepsilon_{zz} &= \frac 1 E \left( \sigma_{zz} - \nu\left(\sigma_{yy} + \sigma_{xx}\right)\right) + \alpha\Delta T \\
|
||||
\varepsilon_{xy} &= \frac{\sigma_{xy}}{2\mu} \\
|
||||
\varepsilon_{xz} &= \frac{\sigma_{xz}}{2\mu} \\
|
||||
\varepsilon_{yz} &= \frac{\sigma_{yz}}{2\mu} \\
|
||||
\mu &= \frac{E}{2(1+\nu)}
|
||||
\end{align}
|
||||
|
||||
where $E$ is Young's modulus, $\nu$ is Poisson's ratio, $\alpha$ is the coefficient of thermal expansion,
|
||||
$\Delta T$ is the temperature change, and $\mu$ is the shear modulus
|
||||
|
||||
# Energy Methods (Slides 0103)
|
||||
|
||||
## Stability
|
||||
|
||||
![I'm not sure entirly what the significance of this slide is.](./images/vimscrot-2023-10-31T15:36:02,741218558+00:00.png)
|
||||
|
||||
- Strain energy is released upon the removal of applied loads and the body returns to undeformed state:
|
||||
|
||||
\begin{equation}
|
||||
U = \frac12 \pmb \sigma \pmb \sigma \times V
|
||||
\end{equation}
|
||||
|
||||
- If the material behaviour is non-linear, it can be generalised to:
|
||||
|
||||
\begin{equation}
|
||||
U = \int_\nu\int_\varepsilon \sigma \mathrm{d}\varepsilon \mathrm{d}V
|
||||
\end{equation}
|
||||
|
||||
- Work done by external forces can be expressed as:
|
||||
|
||||
\begin{equation}
|
||||
W = \sum_i F_iu_i
|
||||
\end{equation}
|
||||
|
||||
where $i$ is any point where force $F_i$ causes displacement $u_i$
|
||||
|
||||
- The *total potential energy* can be expressed as:
|
||||
|
||||
\begin{equation}
|
||||
\text{TPE} = U - W
|
||||
\end{equation}
|
||||
|
||||
- The principle of minimum TPE states that when the body is in equilibrium, TPE must be 'stationary'
|
||||
with respect to the variables of the problem
|
||||
- The equilibrium is **stable if the TPE is minimum**
|
||||
- In most FE problems, the displacement $u$ is chosen as the unknown variables of the problem:
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial(\text{TPE})}{\partial u} = 0
|
||||
\end{equation}
|
||||
|
||||
# Mathematical Background (Slides 0104)
|
||||
|
||||
See lecture slides,
|
||||
[MMME1026 Notes](https://notes.alv.cx/permalink?uuid=16edb140-9946-4759-93df-50cad510fe31),
|
||||
and [lecture slides](./lecture_slides/numerical_methods)/[notes](./lectures_notes/numerical_methods) on numerical methods.
|
||||
|
||||
# Simple 1D Finite Elements (Slides 0105)
|
||||
|
||||
## A Simple Uniaxial 1D Pin-Jointed Element
|
||||
|
||||
See lecture slides.
|
Binary file not shown.
After Width: | Height: | Size: 42 KiB |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue
Block a user