most of the notes on feb 22nd
This commit is contained in:
parent
a8de6477af
commit
6029a95698
@ -384,3 +384,157 @@ Head form:
|
|||||||
\frac{p_s}{\rho g} + z + \frac{v^2}{2g} &= \text{total head} \\
|
\frac{p_s}{\rho g} + z + \frac{v^2}{2g} &= \text{total head} \\
|
||||||
\frac{p_s}{\rho g} + z &= \text{piezometric head}
|
\frac{p_s}{\rho g} + z &= \text{piezometric head}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
|
# Steady Flow Energy Equation (SFEE)
|
||||||
|
|
||||||
|
SFEE is a more general equation that can be applied to **any fluid** and also is also takes
|
||||||
|
**heat energy** into account.
|
||||||
|
This is useful in applications such as a fan heater, jet engines, ICEs, and steam turbines.
|
||||||
|
|
||||||
|
The equation deals with 3 types of energy tranfer:
|
||||||
|
|
||||||
|
1. Thermal energy transfer (e.g. heat tranfer from central heating to a room)
|
||||||
|
2. Work energy transfer (e.g. shaft from car engine that turns wheels)
|
||||||
|
3. Energy transfer in fluid flows (e.g. heat energy in a flow, potential energy in a flow, kinetic
|
||||||
|
energy in a flow)
|
||||||
|
|
||||||
|
## Derivation of Steady Flow Energy Equation
|
||||||
|
|
||||||
|
#### Consider a control volume with steady flows in and out and steady transfers of work and heat.
|
||||||
|
|
||||||
|
The properties don't change with time at any any location and are considered uniform over inlet and
|
||||||
|
outlet areas $A_1$ and $A_2$.
|
||||||
|
|
||||||
|
For steady flow, the mass, $m$, of the fluid **within the control volume** and the total energy, $E$,
|
||||||
|
must be constant.
|
||||||
|
|
||||||
|
$E$ includes **all forms for energy** but we only consider internal, kinetic, and potential energy.
|
||||||
|
|
||||||
|
#### Consider a small time interval $\delta t$.
|
||||||
|
|
||||||
|
During $\delta t$, mass $\delta m_1$ enters the control volume and $\delta m_2$ leaves:
|
||||||
|
|
||||||
|
![](./images/vimscrot-2022-03-01T22:47:31,932087932+00:00.png)
|
||||||
|
|
||||||
|
The specific energy $e_1$ of fluid $\delta m_1$ is the sum of the specific internal energy, specific
|
||||||
|
kinetic energy, and specific potential energy:
|
||||||
|
|
||||||
|
$$e_1 = u_1 + \frac{v_1^2}{2} gz_1$$
|
||||||
|
$$e_2 = u_2 + \frac{v_2^2}{2} gz_2$$
|
||||||
|
|
||||||
|
Since the mass is constant in the control volume, $\delta m_1 = \delta m_2$.
|
||||||
|
|
||||||
|
#### Applying the First Law of Thermodynamics
|
||||||
|
|
||||||
|
The control volume is a system for which $\delta E_1$ is added and $\delta E_2$ is removed::
|
||||||
|
|
||||||
|
$$\delta E = \delta E_2 - \delta E_1$$
|
||||||
|
|
||||||
|
$E$ is constant so applying the
|
||||||
|
[first law of thermodynamics](thermodynamics.html#st-law-of-thermodynamics)
|
||||||
|
we know that:
|
||||||
|
|
||||||
|
$$\delta Q + \delta W = \delta E$$
|
||||||
|
|
||||||
|
We can also say that:
|
||||||
|
|
||||||
|
$$\delta E = \delta E_2 - \delta E_1 = \delta m(e_2 - e_1)$$
|
||||||
|
|
||||||
|
#### The Work Term
|
||||||
|
|
||||||
|
The work term, $\delta W$, is mae up of shaft work **and the work necessary to deform the system**
|
||||||
|
(by adding $\delta m_1$ at the inlet and removing $\delta m_2$ at the outlet):
|
||||||
|
|
||||||
|
$$\delta W = \delta W_s + \text{net flow work}$$
|
||||||
|
|
||||||
|
Work is done **on** the system by the mass entering and **by** the system on the mass leaving.
|
||||||
|
|
||||||
|
For example, at the inlet:
|
||||||
|
|
||||||
|
![](./images/vimscrot-2022-03-01T22:59:14,129582752+00:00.png)
|
||||||
|
|
||||||
|
$$\text{work done on system} = \text{force} \times \text{distance} = p_1A_1\delta x = p_1\delta V_1$$
|
||||||
|
|
||||||
|
Knowing this, we can write:
|
||||||
|
|
||||||
|
$$\delta W = \delta W_s + (p_1\delta V_1 - p_2\delta V_2)$$
|
||||||
|
|
||||||
|
#### Back to the First Law
|
||||||
|
|
||||||
|
Substituting these equations:
|
||||||
|
|
||||||
|
$$\delta E = \delta E_2 - \delta E_1 = \delta m(e_2 - e_1)$$
|
||||||
|
$$\delta W = \delta W_s + (p_1\delta V_1 - p_2\delta V_2)$$
|
||||||
|
|
||||||
|
into:
|
||||||
|
|
||||||
|
$$\delta Q + \delta W = \delta E$$
|
||||||
|
|
||||||
|
gives us:
|
||||||
|
|
||||||
|
$$\delta Q + \left[ \delta W_s + (p_1\delta V_1 - p_2\delta V_2)\right] = \delta m (e_2-e_1)$$
|
||||||
|
|
||||||
|
Dividing everything by $\delta m$ and with a bit of rearranging we get:
|
||||||
|
|
||||||
|
$$q + w_s = e_2-e_1 + \frac{p_2}{\rho_2} - \frac{p_1}{\rho_1}$$
|
||||||
|
|
||||||
|
#### Substiute Back for $e$
|
||||||
|
|
||||||
|
$$e = u + \frac{v^2}{2} + gz$$
|
||||||
|
|
||||||
|
This gives us:
|
||||||
|
|
||||||
|
$$q + w_s + \left[ u_2 + \frac{p_2}{\rho_2} + gz_2 + \frac{v_2^2}{2} \right] - \left[ u_1 + \frac{p_1}{\rho_1} + gz_1 + \frac{v_1^2}{2} \right]$$
|
||||||
|
|
||||||
|
#### Rearrange and Substitute for Enthalpy
|
||||||
|
|
||||||
|
By definition, enthalpy $h = u + pv = u + \frac p \rho$.
|
||||||
|
This gives us the equation:
|
||||||
|
|
||||||
|
$$q + w_s = (h_2 - h_1) + g(z_2-z_1) + \frac{v_2^2-v_1^2}{2}$$
|
||||||
|
|
||||||
|
This equation is in specific energy form.
|
||||||
|
|
||||||
|
Multiplying by mass flow rate will give you the power form.
|
||||||
|
|
||||||
|
## Application of the Steady Flow Energy Equation
|
||||||
|
|
||||||
|
#### Heat Transfer Devices
|
||||||
|
|
||||||
|
Like heat exchangers, boilers, condensers, and furnaces.
|
||||||
|
|
||||||
|
In this case, $\dot W = 0$, $\delta z ~ 0$, and $\delta v^2 ~ 0$ so the equation can be simplified
|
||||||
|
to just
|
||||||
|
|
||||||
|
$$\dot Q = \dot m(h_2-h_1) = \dot m c_p(T_2-T_1)$$
|
||||||
|
|
||||||
|
#### Throttle Valve
|
||||||
|
|
||||||
|
No heat and work transfer.
|
||||||
|
Often you can neglect potential and kinetic energy terms, giving you:
|
||||||
|
|
||||||
|
$$0 = h_2-h_1)$$
|
||||||
|
|
||||||
|
#### Work Transfer Devices
|
||||||
|
|
||||||
|
e.g. Turbines, Pumps, Fans, and Compressors
|
||||||
|
|
||||||
|
For these there is often no heat transfer ($\dot Q = 0$) and we can neglect potential
|
||||||
|
($\delta z ~ 0$) and kinetic ($\delta v^2 ~ 0$) energy terms, giving us the equation
|
||||||
|
|
||||||
|
$$\dot W = \dot m (h_2-h_1) = \dot m c_p(T_2-T_1)$$
|
||||||
|
|
||||||
|
#### Mixing Devices
|
||||||
|
|
||||||
|
e.g. hot and cold water in a shower
|
||||||
|
|
||||||
|
In these processes, work and heat transfers are not important and you can often
|
||||||
|
neglect potential and kinetic energy terms, giving us the same equation as for the throttle valve
|
||||||
|
earlier:
|
||||||
|
|
||||||
|
$$0 = h_2-h_1$$
|
||||||
|
|
||||||
|
which you may want to write more usefully as:
|
||||||
|
|
||||||
|
$$\sum \dot m h_{out} = \sum \dot m h_{in}$$
|
||||||
|
|
||||||
|
Binary file not shown.
After Width: | Height: | Size: 26 KiB |
Binary file not shown.
After Width: | Height: | Size: 9.0 KiB |
Loading…
Reference in New Issue
Block a user