Watch lecture 1.5, 1.6
This commit is contained in:
parent
f7329c8108
commit
655ddc6cfc
@ -8,7 +8,7 @@ tags:
|
||||
- maths
|
||||
- statics
|
||||
- dynamics
|
||||
title: MMME1028 // Statics and Dynamics
|
||||
title: MMME1028 // Statics
|
||||
---
|
||||
|
||||
# Lecture L1.1, L1.2
|
||||
@ -38,10 +38,14 @@ Can be found here [here](./lecture_exercises/mmme1028_l1.2_exercises_2021-10-04.
|
||||
- Body is in equilibrium if sum of all forces and moments acting on
|
||||
body are 0
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
### Example
|
||||
|
||||
Determine force $F$ and $x$ so that the body is in equilibrium.
|
||||
|
||||
</summary>
|
||||
|
||||
![](./images/vimscrot-2021-10-04T09:14:41,378027532+01:00.png)
|
||||
|
||||
1. Check horizontal equilibrium
|
||||
@ -62,6 +66,8 @@ Determine force $F$ and $x$ so that the body is in equilibrium.
|
||||
|
||||
$x = 6$
|
||||
|
||||
</details>
|
||||
|
||||
## Free Body Diagrams
|
||||
|
||||
A free body diagram is a diagram of a single (free) body which shows all
|
||||
@ -138,3 +144,304 @@ This principle can be useful in determining moments.
|
||||
5. Solve everything symbolically (algebraicly) until the end
|
||||
6. Check your answers make sense
|
||||
7. Don't forget the units
|
||||
|
||||
# Lecture L1.4
|
||||
|
||||
## Tension and Compression
|
||||
|
||||
- The convention in standard mechanical engineering problems is that positive values are for
|
||||
tension and negative values for compression
|
||||
- Members in tension can be replaces by cables, which can support tension but not compression
|
||||
- Resisting compression is harder as members in compression can buckle
|
||||
|
||||
## What is a Pin Joint?
|
||||
|
||||
- Pin jointed structures are structures where joints are pinned (free to rotate)
|
||||
- Pin joints are represented by a circle (pin) about which members are free to rotate:
|
||||
|
||||
![](./images/vimscrot-2021-10-18T09:14:14,289274419+01:00.png)
|
||||
|
||||
- A pin joint transmits force but cannot carry a moment
|
||||
|
||||
## What is a Truss?
|
||||
|
||||
- Trusses are an assembly of many bars, which are pin jointed in design but do not rotate due to
|
||||
the geometry of the design. A pylon is a good example of this
|
||||
- Trusses are used in engineering to transfer forces through a structure
|
||||
- When pin jointed trusses are loaded at the pins, the bars are subjected to pure tensile or
|
||||
compressive forces.
|
||||
|
||||
These bars are two force members
|
||||
|
||||
## Equilibrium at the Joints
|
||||
|
||||
![](./images/vimscrot-2021-10-18T09:19:44,218728293+01:00.png)
|
||||
|
||||
![](./images/vimscrot-2021-10-18T09:20:55,909323283+01:00.png)
|
||||
|
||||
### Forces at A
|
||||
|
||||
$$\sum F_y(A) = \frac P 2 + T_{AB}\sin{\frac \pi 4} = 0 \rightarrow T_{AB} = -\frac P 2$$
|
||||
|
||||
\begin{align*}
|
||||
\sum F_x(A) &= T_{AB}\cos{\frac pi 4} + T_{AC} = 0 \\
|
||||
T_AC &= -\frac{-P} 2 \times \frac{\sqrt{2}} 2 = \frac P 2
|
||||
\end{align*}
|
||||
|
||||
### Forces at B
|
||||
|
||||
Add the information we just obtained from calculating forces at A:
|
||||
|
||||
![](./images/vimscrot-2021-10-18T09:30:57,113760253+01:00.png)
|
||||
|
||||
And draw a free body diagram for the forces at B:
|
||||
|
||||
![](./images/vimscrot-2021-10-18T09:31:09,513726429+01:00.png)
|
||||
|
||||
$$
|
||||
\sum F_y(B) = -\frac{-P} 2 \sin{\frac \pi 4} - T_{BC} = 0 \rightarrow
|
||||
T_{BC} = \frac P {\sqrt 2} \times \frac {\sqrt 2} 2 = \frac P 2
|
||||
$$
|
||||
|
||||
\begin{align*}
|
||||
\sum F_x(B) &= -\frac{-P}{\sqrt2}\cos{\frac \pi 4} + T_{BD} = 0 \\
|
||||
T_{BD} &= -\frac P 2
|
||||
\end{align*}
|
||||
|
||||
## Symmetry in Stuctures
|
||||
|
||||
Symmetry of bar forces in a pin jointed frame depends on to aspects:
|
||||
|
||||
1. Symmetry of the stucture
|
||||
2. Symmetry of the loading (forces applied)
|
||||
|
||||
Both conditions must be met to exploit symmetry.
|
||||
|
||||
# Lecture L1.5, L1.6
|
||||
|
||||
## Method of Sections
|
||||
|
||||
The method of sections is very useful to find a few forces inside a complex structure.
|
||||
|
||||
If an entire section is in equilibrium, so are discrete parts of the same structure.
|
||||
This means we an isolate substructures and draws free body diagrams for them.
|
||||
|
||||
We must add all the forces acting on the substructure.
|
||||
Then we make a virtua cut through some of the members, replacing them with forces.
|
||||
|
||||
Then we can write 3 equilibrium equations for the substructure:
|
||||
|
||||
1. 1 Horizontal, 1 vertical, and 1 moment equation
|
||||
2. Either horizonal or vertical and 2 moment equations
|
||||
3. 3 moment equations
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example 1
|
||||
|
||||
</summary>
|
||||
|
||||
Draw a virtual cut through the structure, making sure to cut through all the bars whose forces
|
||||
you are trying to find:
|
||||
|
||||
![](./images/vimscrot-2021-10-18T09:54:16,538381701+01:00.png)
|
||||
|
||||
Draw the free body diagram, substituting cut bars by forces:
|
||||
|
||||
![](./images/vimscrot-2021-10-18T09:54:44,339423030+01:00.png)
|
||||
|
||||
As there are three unknown forces, we need three equilibrium equations.
|
||||
|
||||
#### First Equation: Moments about E
|
||||
|
||||
\begin{align*}
|
||||
\sum M(E) &= \frac P 2 \times 2L + T_{DF}L = 0 \\
|
||||
T_{DF} &= -P
|
||||
\end{align*}
|
||||
|
||||
#### Second Equation: Vertical Equilibrium
|
||||
|
||||
\begin{align*}
|
||||
\sum F_y &= \frac P 2 + T_{EF}\sin{\frac \pi 4} = 0 \\
|
||||
T_{EF} &= -\frac P {\sqrt2}
|
||||
\end{align*}
|
||||
|
||||
#### Third Equation: Horizontal Equilibrium
|
||||
|
||||
\begin{align*}
|
||||
\sum F_x = T_{DF} + T_{EF}\cos{\frac \pi 4} + T_{EG} = 0 \\
|
||||
T_{EG} = \frac {3P} 2
|
||||
\end{align*}
|
||||
|
||||
#### Taking Moments from Outside the Structure
|
||||
|
||||
If we only needed EG, we could have taken moments about point F, outside our substructure:
|
||||
|
||||
![](./images/vimscrot-2021-10-18T10:03:11,111898958+01:00.png)
|
||||
|
||||
\begin{align*}
|
||||
\sum M(F) &= \frac P 2 \times 3L -T_{EG}L = 0 \\
|
||||
T_{EG} &= \frac {3P} 2
|
||||
\end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
## Zero-Force Members
|
||||
|
||||
![](./images/vimscrot-2021-10-18T10:24:40,832835425+01:00.png)
|
||||
|
||||
Consider the free body diagram for the joint at G:
|
||||
|
||||
![](./images/vimscrot-2021-10-18T10:25:19,289848899+01:00.png)
|
||||
|
||||
$$\sum F_y(G) = T_{FG} = 0$$
|
||||
$$\sum F_x(G) = -T_{EG} + T_{GJ} = 0 \rightarrow T_{EG} = T_{GJ}$$
|
||||
|
||||
Meaning that the structure is effecively the same as this one:
|
||||
|
||||
![](./images/vimscrot-2021-10-18T10:28:27,972396634+01:00.png)
|
||||
|
||||
Why was it there?
|
||||
|
||||
- The structure may be designed for other loading patterns
|
||||
- The bar may prevent the struture from becoming a mechanism
|
||||
- A zero force member may also be there to prevent buckling
|
||||
|
||||
## Externally Applied Moments
|
||||
|
||||
Externally applied moments are dealt with in the same way as external forces, but they only
|
||||
contribute to moment equations and not force equilibrium equations.
|
||||
|
||||
## Distributed Load
|
||||
|
||||
A distriuted load is applied uniformly to a bar or section of a bar.
|
||||
|
||||
It can be represented by a single force through the midpoint its midpoint.
|
||||
|
||||
![](./images/vimscrot-2021-10-18T10:40:12,204385456+01:00.png)
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example 1
|
||||
|
||||
</summary>
|
||||
|
||||
![](./images/vimscrot-2021-10-18T10:41:13,789765944+01:00.png)
|
||||
|
||||
Is equivalent to:
|
||||
|
||||
![](./images/vimscrot-2021-10-18T10:41:49,859420913+01:00.png)
|
||||
|
||||
</details>
|
||||
|
||||
## Equivalent Loads
|
||||
|
||||
When loads are applied within a bar, as far as support reactions and bar forces in *other* bars
|
||||
are concered, we can determine *equivalent node forces* using equilibrium
|
||||
|
||||
![](./images/vimscrot-2021-10-18T10:44:51,867483875+01:00.png)
|
||||
|
||||
# Lecture L1.6
|
||||
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
### Example 1
|
||||
|
||||
The figure shows a light roof truss oaded by a force $F = 90$ kN at 45\textdegree to the horizontal
|
||||
at point $B$.
|
||||
|
||||
</summary>
|
||||
|
||||
![](./images/vimscrot-2021-10-18T14:42:45,045976929+01:00.png)
|
||||
|
||||
a. Find the reaction forces at A and D using equilibrium applied to the whole structure.
|
||||
|
||||
> 1. Add unknown quantities to the diagram
|
||||
>
|
||||
> ![](./images/vimscrot-2021-10-18T14:44:02,679972841+01:00.png)
|
||||
>
|
||||
> 2. Consider the number of unknowns --- there are 3 therefore 3 equations are needed
|
||||
> 3. Decide which equilibrium equation to start with
|
||||
>
|
||||
> Horizontal equilibrium:
|
||||
>
|
||||
> \begin{align*}
|
||||
\sum F_x &= R_{Ax} - F\cos45 = 0 \\
|
||||
R_{Ax} &= 63.6\text{ kN}
|
||||
> \end{align*}
|
||||
>
|
||||
> Vertical equilibrium:
|
||||
>
|
||||
> \begin{align*}
|
||||
\sum F_y &= R_{Ay} + R_{Dy} - F\sin = 0 \\
|
||||
R_{Ay} + R_{Dy} &= \frac{\sqrt2 F} 2
|
||||
> \end{align*}
|
||||
>
|
||||
> Moment equation:
|
||||
>
|
||||
> \begin{align*}
|
||||
> \sum M_{xy}(B) &= 4.5R_{Ay} - 4.5R_{Dy} - L_{BC}R_{Ax} = 0 \\
|
||||
> \frac{L_{BC}}{4.5} &= \tan30 = \frac 1 {\sqrt3} \rightarrow L_{BC} = 2.6 \\
|
||||
> \end{align*}
|
||||
>
|
||||
> 4. Solve for $R_{Ay}$
|
||||
>
|
||||
> \begin{align*}
|
||||
> 4.5R_{Ay} &= 4.5R_{Dy} + 2.6\times\frac{\sqrt2 F}{2} & R_{Dy} = \frac{\sqrt2 F}{2} - R_{Ay} \\
|
||||
> 4.5R_{Ay} &= 4.5\left(\frac{\sqrt2 F}{2} - R_{Ay}\right) + 2.6\times\frac{\sqrt2 F}{2} \\
|
||||
> R_{Ay} &= 0.56F = 50.2\text{ kN}
|
||||
> \end{align*}
|
||||
>
|
||||
> 5. Substitute to find $R_{Dy}$
|
||||
>
|
||||
> \begin{align*}
|
||||
> R_{Dy} = \frac{\sqrt2 F}{2} - R_{Ay} = (0.71-0.56)F = 13.3\text{ kN}\\
|
||||
> \end{align*}
|
||||
|
||||
|
||||
b. Use the graphical/trigonometric method o check your answer.
|
||||
|
||||
> Write the reaction at A as a single force with unknown direction:
|
||||
>
|
||||
> ![](./images/vimscrot-2021-10-18T15:13:15,369363473+01:00.png)
|
||||
>
|
||||
> When three forces act on an object in equilibrium, they must:
|
||||
>
|
||||
> 1. Make a triangle of forces
|
||||
> 2. Go through a single point
|
||||
>
|
||||
> So we can figure out the angle of $R_{A}$ by drawing it such that all the lines of action of
|
||||
> all forces go through the same point:
|
||||
>
|
||||
> ![](./images/vimscrot-2021-10-18T15:19:58,074989197+01:00.png)
|
||||
>
|
||||
> \begin{align*}
|
||||
L_{DE} &= L_{BC} = 2.6 \\
|
||||
L_{EG} &= \tan45\times L_{BE} = 4.5 \\
|
||||
L_{DE} &= 2.6+4.5 = 7.1 \\
|
||||
\\
|
||||
\tan\theta &= \frac{L_{DG}}{L_{AD}} = 0.79 \\
|
||||
\theta &= 38.27
|
||||
> \end{align*}
|
||||
>
|
||||
> Now draw the force triangle:
|
||||
>
|
||||
> ![](./images/vimscrot-2021-10-18T15:30:35,135421357+01:00.png)
|
||||
>
|
||||
> Using the sine rule we find out $R_A$ and $R_{Dy}$, which are $81.1$ kN and $13.4$ kN,
|
||||
> respectively.
|
||||
>
|
||||
> Now we can check our answers in part (a) and (b) are the same:
|
||||
>
|
||||
> - $R_{Dy} = 13.4$
|
||||
> - $R_{Ax} = 81.1\cos38.27 = 63.6$
|
||||
> - $R_{Ay} = 81.1\sin.27 = 50.2$
|
||||
>
|
||||
> The methods agree.
|
||||
|
||||
</details>
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user