add mmme1048 back in lol
386
uni/mmme/1048_thermodynamics_and_fluid_mechanics/fluid_dynamics.md
Executable file
@ -0,0 +1,386 @@
|
|||||||
|
---
|
||||||
|
author: Alvie Rahman
|
||||||
|
date: \today
|
||||||
|
title: MMME1048 // Fluid Dynamics
|
||||||
|
tags: [ uni, nottingham, mechanical, engineering, fluid_mechanics, mmme1048, fluid_dynamics ]
|
||||||
|
---
|
||||||
|
|
||||||
|
\newcommand\Rey{\mbox{\textit{Re}}}
|
||||||
|
\newcommand\textRey{$\Rey$}
|
||||||
|
|
||||||
|
# Introductory Concepts
|
||||||
|
|
||||||
|
These are ideas you need to know about to know what's going on, I guess?
|
||||||
|
|
||||||
|
## Control Volumes
|
||||||
|
|
||||||
|
A control volume is a volume with an imaginary boundry to make it easier to analyze the flow of a
|
||||||
|
fluid.
|
||||||
|
The boundry is drawn where the properties and conditions of the fluid is known, or where an
|
||||||
|
approximation can be made.
|
||||||
|
Properties which may be know include:
|
||||||
|
|
||||||
|
- Velocity
|
||||||
|
- Pressure
|
||||||
|
- Temperature
|
||||||
|
- Viscosity
|
||||||
|
|
||||||
|
The region in the control volume is analyed in terms of enery and mass flows entering and leaving
|
||||||
|
the control volumes.
|
||||||
|
You don't have to understand what's going on inside the control volume.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
### Example 1
|
||||||
|
|
||||||
|
The thrust of a jet engine on an aircraft at rest can be analysed in terms of the changes in
|
||||||
|
momentum or the air passing through the engine.
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-11-03T21:51:51,497459693+00:00.png)
|
||||||
|
|
||||||
|
The control volume is drawn far enough in front of the engine that the air velocity entering can
|
||||||
|
be assumed to be at atmospheric pressurce and its velocity negligible.
|
||||||
|
|
||||||
|
At the exit of the engine the boundary is drawn close where the velocity is known and the air
|
||||||
|
pressure atmospheric.
|
||||||
|
|
||||||
|
The control volume cuts the material attaching the engine to the aircraft and there will be a force
|
||||||
|
transmitted across the control volume there to oppose the forces on the engine created by thrust
|
||||||
|
and gravity.
|
||||||
|
|
||||||
|
The details of the flows inside the control volume do not need to be known as the thrust can be
|
||||||
|
determined in terms of forces and flows crossing the boundaries drawn.
|
||||||
|
However, to understand the flows inside the engine in more detail, a more detailed analysis would
|
||||||
|
be required.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## Ideal Fluid
|
||||||
|
|
||||||
|
The actual flow pattern in a fluid is usually complex and difficult to model but it can be
|
||||||
|
simplified by assuming the fluid is ideal.
|
||||||
|
The ideal fluid has the following properties:
|
||||||
|
|
||||||
|
- Zero viscosity
|
||||||
|
- Incompressible
|
||||||
|
- Zero surface tension
|
||||||
|
- Does not change phases
|
||||||
|
|
||||||
|
Gases and vapours are compressible so can only be analysed as ideal fluids when flow velocities are
|
||||||
|
low but they can often be treated as ideal (or perfect) gases, in which case the ideal gas equations
|
||||||
|
apply.
|
||||||
|
|
||||||
|
## Steady Flow
|
||||||
|
|
||||||
|
Steady flow is a flow which has *no changes in properties with respect to time*.
|
||||||
|
Properties may vary from place to place but in the same place the properties must not change in
|
||||||
|
the control volume to be steady flow.
|
||||||
|
|
||||||
|
Unsteady flow does change with respect to time.
|
||||||
|
|
||||||
|
## Uniform Flow
|
||||||
|
|
||||||
|
Uniform flow is when all properties are the same at all points at any given instant but can change
|
||||||
|
with respect to time, like the opposite of steady flow.
|
||||||
|
|
||||||
|
## One Dimensional Flow
|
||||||
|
|
||||||
|
In one dimensional (1D) flow it is assumed that all properties are uniform over any plane
|
||||||
|
perpedenciular to the direction of flow (e.g. all points along the cross section of a pipe have
|
||||||
|
identical properties).
|
||||||
|
|
||||||
|
This means properties can only flow in one direction---usually the direction of flow.
|
||||||
|
|
||||||
|
1D flow is never achieved exactly in practice as when a fluid flows along a pipe, the velocity at
|
||||||
|
the wall is 0, and maximum in the centre of the pipe.
|
||||||
|
Despite this, assuming flow is 1D simplifies the analysis and often is accurate enough.
|
||||||
|
|
||||||
|
## Flow Patterns
|
||||||
|
|
||||||
|
There are multiple ways to visualize flow patterns.
|
||||||
|
|
||||||
|
### Streamlines
|
||||||
|
|
||||||
|
A streamline is a line along which all the particle have, at a given instant, velocity vectors
|
||||||
|
which are tangential to the line.
|
||||||
|
|
||||||
|
Therefore there is no component of velocity of a streamline.
|
||||||
|
|
||||||
|
A particle can never cross a streamline and *streamlines never cross*.
|
||||||
|
|
||||||
|
They can be constructed mathematically and are often shown as output from CFD analysis.
|
||||||
|
|
||||||
|
For a steady flow there are no changes with respect to time so the streamline pattern does not.
|
||||||
|
The pattern does change when in unsteady flow.
|
||||||
|
|
||||||
|
Streamlines in uniform flow must be straight and parallel.
|
||||||
|
They must be parallel as if they are not, then different points will have different directions and
|
||||||
|
therefore different velocities.
|
||||||
|
Same reasoning with if they are not parallel.
|
||||||
|
|
||||||
|
### Pathlines
|
||||||
|
|
||||||
|
A pathline shows the route taken by a single particle during a given time interval.
|
||||||
|
It is equivalent to a high exposure photograph which traces the moevement of the particle marked.
|
||||||
|
You could track pathlines with a drop of injected dye or inserting a buoyant solid particle which
|
||||||
|
has the same density as the solid.
|
||||||
|
|
||||||
|
Pathlines may cross.
|
||||||
|
|
||||||
|
### Streaklines
|
||||||
|
|
||||||
|
A streakline joins, at any given time, all particles that have passed through a given point.
|
||||||
|
Examples of this are line dye or a smoke stream which is produced from a continuous supply.
|
||||||
|
|
||||||
|
## Viscous (Real) Fluids
|
||||||
|
|
||||||
|
### Viscosity
|
||||||
|
|
||||||
|
A fluid offers resisistance to motion due to its viscosity or internal friction.
|
||||||
|
The greater the resistance to flow, the greater the viscosity.
|
||||||
|
|
||||||
|
Higher viscosity also reduces the rate of shear deformation between layers for a given shear stress.
|
||||||
|
|
||||||
|
Viscosity comes from two effects:
|
||||||
|
|
||||||
|
- In liquids, the inter-molecular forces act as drag between layers of fluid moving at different
|
||||||
|
velocities
|
||||||
|
- In gases, the mixing of faster and slower moving fluid causes friction due to momentum transfer.
|
||||||
|
The slower layers tend to slow down the faster ones
|
||||||
|
|
||||||
|
### Newton's Law of Viscosity
|
||||||
|
|
||||||
|
Viscosity can be defined in terms of rate of shear or velocity gradient.
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-11-17T14:14:05,079195275+00:00.png)
|
||||||
|
|
||||||
|
Consider the flow in the pipe above.
|
||||||
|
Fluid in contact with the surface has a velocity of 0 because the surface irregularities trap the
|
||||||
|
fluid particles.
|
||||||
|
A short distance away from the surface the velocity is low but in the middle of the pipe the
|
||||||
|
velocity is $v_F$.
|
||||||
|
|
||||||
|
Let the velocity at a distance $y$ be $v$ and at a distance $y + \delta y$ be $v + \delta v$.
|
||||||
|
|
||||||
|
The ratio $\frac{\delta v}{\delta y}$ is the average velocity gradient over the distance
|
||||||
|
$\delta y$.
|
||||||
|
|
||||||
|
But as $\delta y$ tends to zero, $\frac{\delta v}{\delta y} \rightarrow$ the value of the
|
||||||
|
differential $\frac{\mathrm{d}v}{\mathrm{d}y}$ at a point such as point A.
|
||||||
|
|
||||||
|
For most fluids in engineering it is found that the shear stress, $\tau$, is directly proportional
|
||||||
|
to the velocity gradient when straight and parallel flow is involved:
|
||||||
|
|
||||||
|
$$\tau = \mu\frac{\mathrm{d}v}{\mathrm{d}y}$$
|
||||||
|
|
||||||
|
Where $\mu$ is the constant of proportinality and known as the dynamic viscosity, or simply the
|
||||||
|
viscosity of the fluid.
|
||||||
|
|
||||||
|
This is Newton's Law of Viscosity and fluids that ovey it are known as Newtonian fluids.
|
||||||
|
|
||||||
|
### Viscosity and Lubrication
|
||||||
|
|
||||||
|
Where a fluid is a thin film (such as in lubricating flows), the velocity gradient can be
|
||||||
|
approximated to be linear and an estimate of shear stress obtained:
|
||||||
|
|
||||||
|
$$\tau = \mu \frac{\delta v}{\delta y} \approx \mu \frac{v}{y}$$
|
||||||
|
|
||||||
|
From the shear stress we can calculate the force exerted by a film by the relationship:
|
||||||
|
|
||||||
|
$$\tau = \frac F A$$
|
||||||
|
|
||||||
|
# Fluid Flow
|
||||||
|
|
||||||
|
## Types of flow
|
||||||
|
|
||||||
|
There are essentially two types of flow:
|
||||||
|
|
||||||
|
- Smooth (laminar) flow
|
||||||
|
|
||||||
|
At low flow rates, particles of fluid are moving in straight lines and can be considered to be
|
||||||
|
moving in layers or laminae.
|
||||||
|
|
||||||
|
- Rough (turbulent) flow
|
||||||
|
|
||||||
|
At higher flow rates, the paths of the individual fluid particles are not straight but disorderly
|
||||||
|
resulting in mixing taking place
|
||||||
|
|
||||||
|
Between fully laminar and fully turbulent flows is a transition region.
|
||||||
|
|
||||||
|
## The Reynolds Number
|
||||||
|
|
||||||
|
### Development of the Reynolds Number
|
||||||
|
|
||||||
|
In laminar flow the most influentialfactor is the magnitude of the viscous forces:
|
||||||
|
|
||||||
|
$$viscous\, forces \propto \mu\frac v l l^2 = \mu vl$$
|
||||||
|
|
||||||
|
where $v$ is a characteristic velocit and $l$ is a characteristic length.
|
||||||
|
|
||||||
|
In turbulent flow viscous effects are not significant but inertia effects (mixing, momentum
|
||||||
|
exchange, acceleration of fluid mass) are.
|
||||||
|
Interial forces can be represented by $F = ma$
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
m &\propto \rho l^3 \\
|
||||||
|
a &= \frac{dv}{dt} \\
|
||||||
|
&\therefore a \propto \frac v t \text{ and } t = \frac l v \\
|
||||||
|
&\therefore a \propto \frac {v^2} l \\
|
||||||
|
&\therefore \text{Interial forces} \propto \rho l^2\frac{v^2} l = \rho l^2v^2
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
The ratio of internalforces to viscous forces is called the Reynolds number and is abbreviated to
|
||||||
|
Re:
|
||||||
|
|
||||||
|
$$\Rey = \frac{\text{interial forces}}{\text{viscous forces}} = \frac {\rho l^2v^2}{\mu vl} = \frac {\rho vl} \mu$$
|
||||||
|
|
||||||
|
where $\rho$ and $\mu$ are fluid properties and $v$ and $l$ are characteristic velocity and length.
|
||||||
|
|
||||||
|
- During laminar flow, $\Rey$ is small as viscous forces dominate.
|
||||||
|
- During turbulent flow, $\Rey$ is large as intertial forces dominate.
|
||||||
|
|
||||||
|
\textRey is a non dimensional group.
|
||||||
|
It has no units because the units cancel out.
|
||||||
|
|
||||||
|
Non dimensional groups are very important in fluid mechancics and need to be considered when scaling
|
||||||
|
experiments.
|
||||||
|
|
||||||
|
If \textRey is the same in two different pipes, the flow will be the same regardless of actual
|
||||||
|
diameters, densities, or other properties.
|
||||||
|
|
||||||
|
#### \textRey for a Circular Section Pipe
|
||||||
|
|
||||||
|
The characteristic length for pipe flow is the diameter $d$ and the characteristic velocity is
|
||||||
|
mean flow in the pipe, $v$, so \textRey of a circular pipe section is given by:
|
||||||
|
|
||||||
|
$$\Rey = \frac{\rho vd} \mu$$
|
||||||
|
|
||||||
|
For flow in a smooth circular pipe under normal engineering conditions the following can be assumed:
|
||||||
|
|
||||||
|
- $\Rey < 2000$ --- laminar flow
|
||||||
|
- $2000 < \Rey < 4000$ --- transition
|
||||||
|
- $\Rey > 4000$ --- fully turbulent flow
|
||||||
|
|
||||||
|
These figures can be significantly affected by surface roughness so flow may be turbulent below
|
||||||
|
$\Rey = 4000$.
|
||||||
|
|
||||||
|
# Euler's Equation
|
||||||
|
|
||||||
|
In a static fluid, pressure only depends on density and elevation.
|
||||||
|
In a moving fluid the pressure is also related to acceleration, viscosity, and shaft work done on or
|
||||||
|
by the fluid.
|
||||||
|
|
||||||
|
$$\frac 1 \rho \frac{\delta p}{\delta s} + g\frac{\delta z}{\delta s} + v\frac{\delta v}{\delta s} = 0$$
|
||||||
|
|
||||||
|
## Assumptions / Conditions
|
||||||
|
|
||||||
|
The Euler euqation applies where the following can be assumed:
|
||||||
|
|
||||||
|
- Steady flow
|
||||||
|
- The fluid is inviscid
|
||||||
|
- No shaft work
|
||||||
|
- Flow along a streamline
|
||||||
|
|
||||||
|
# Bernoulli's Equation
|
||||||
|
|
||||||
|
Euler's equation comes in differential form, which is difficult to apply.
|
||||||
|
We can integrate it to make it easier
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac 1 \rho \frac{\delta p}{\delta s} + g\frac{\delta z}{\delta s} + v\frac{\delta v}{\delta s} &= 0
|
||||||
|
& \text{(Euler's equation)} \\
|
||||||
|
\int\left\{\frac{\mathrm{d}p} \rho + g\mathrm{d}z + v\mathrm{d}v \right\} &= \int 0 \,\mathrm{d}s \\
|
||||||
|
\therefore \int \frac 1 \rho \,\mathrm{d}p + g\int \mathrm{d}z + \int v \,\mathrm{d}v &= \int 0 \,\mathrm{d}s \\
|
||||||
|
\therefore \int \frac 1 \rho \,\mathrm{d}p + gz + \frac{v^2}{2} &= \text{constant}_1
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
The first term of the equation can only be integrated if $\rho$ is constant as then:
|
||||||
|
|
||||||
|
$$\int \frac 1 \rho \,\mathrm{d}p = \frac 1 \rho \int \mathrm{d}p = \frac p \rho$$
|
||||||
|
|
||||||
|
So, if density is constant:
|
||||||
|
|
||||||
|
$$\frac p \rho + gz + \frac{v^2}{2} = \text{constant}_2$$
|
||||||
|
|
||||||
|
## Assumptions / Conditions
|
||||||
|
|
||||||
|
All the assumptions from Euler's equation apply:
|
||||||
|
|
||||||
|
- Steady flow
|
||||||
|
- The fluid is inviscid
|
||||||
|
- No shaft work
|
||||||
|
- Flow along a streamline
|
||||||
|
|
||||||
|
But also one more:
|
||||||
|
|
||||||
|
- Incompressible flow
|
||||||
|
|
||||||
|
## Forms of Bernoulli's Equation
|
||||||
|
|
||||||
|
### Energy Form
|
||||||
|
|
||||||
|
This form of Bernoulli's Equation is known as the energy form as each component has the units
|
||||||
|
energy/unit mass:
|
||||||
|
|
||||||
|
$$\frac p \rho + gz + \frac{v^2}{2} = \text{constant}_2$$
|
||||||
|
|
||||||
|
It is split into 3 parts:
|
||||||
|
|
||||||
|
- Pressure energy ($\frac p \rho$) --- energy needed to move the flow against the pressure
|
||||||
|
(flow work)
|
||||||
|
- Potential energy ($gz$) --- elevation
|
||||||
|
- Kinetic energy ($\frac{v^2}{2}$) --- kinetic energy
|
||||||
|
|
||||||
|
### Elevation / Head Form
|
||||||
|
|
||||||
|
Divide the energy form by $g$:
|
||||||
|
|
||||||
|
$$\frac\rho{\rho g} + z + \frac{v^2}{2g} = H_T$$
|
||||||
|
|
||||||
|
where $H_T$ is constant and:
|
||||||
|
|
||||||
|
- $\frac{p}{\rho g}$ --- static/pressure haed
|
||||||
|
- $z$ --- elevation head
|
||||||
|
- $\frac{v_2}{2g}$ --- dynamic/velocity head
|
||||||
|
- $H_T$ --- total head
|
||||||
|
|
||||||
|
- Each term now has units of elevations
|
||||||
|
- In fluids the elevation is sometimes called head
|
||||||
|
- This form of the equation is also useful in some applications
|
||||||
|
|
||||||
|
### Pressure Form
|
||||||
|
|
||||||
|
Multiply the energy form by $\rho$ to give the pressure form:
|
||||||
|
|
||||||
|
$$p + \rho gz + \frac 1 2 \rho v^2 = \text{constant}$$
|
||||||
|
|
||||||
|
where:
|
||||||
|
|
||||||
|
- $p$ --- static pressure (often written as $p_s$)
|
||||||
|
- $\rho gz$ --- elevation pressure
|
||||||
|
- $\frac 1 2 \rho v^2$ --- dynamic pressure
|
||||||
|
|
||||||
|
- Density is constant
|
||||||
|
- Each term now has the units of pressure
|
||||||
|
- This form is useful is we are interested in pressures
|
||||||
|
|
||||||
|
### Comparing two forms of the Bernoulli Equation (Piezometric)
|
||||||
|
|
||||||
|
$$\text{piezometric} = \text{static} + \text{elevation}$$
|
||||||
|
|
||||||
|
Pressure form:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
p_s + \rho gz + \frac 1 2 \rho v^2 &= \text{total pressure} \\
|
||||||
|
p_s + \rho gz &= \text{piezometric pressure}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Head form:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac{p_s}{\rho g} + z + \frac{v^2}{2g} &= \text{total head} \\
|
||||||
|
\frac{p_s}{\rho g} + z &= \text{piezometric head}
|
||||||
|
\end{align*}
|
506
uni/mmme/1048_thermodynamics_and_fluid_mechanics/fluid_mechanics.md
Executable file
@ -0,0 +1,506 @@
|
|||||||
|
---
|
||||||
|
author: Alvie Rahman
|
||||||
|
date: \today
|
||||||
|
title: MMME1048 // Fluid Mechanics Intro and Statics
|
||||||
|
tags: [ uni, nottingham, mechanical, engineering, fluid_mechanics, mmme1048, fluid_statics ]
|
||||||
|
---
|
||||||
|
|
||||||
|
# Properties of Fluids
|
||||||
|
|
||||||
|
## What is a Fluid?
|
||||||
|
|
||||||
|
- A fluid may be liquid, vapor, or gas
|
||||||
|
- No permanent shape
|
||||||
|
- Consists of atoms in random motion and continual collision
|
||||||
|
- Easy to deform
|
||||||
|
- Liquids have fixed volume, gasses fill up container
|
||||||
|
- **A fluid is a substance for wich a shear stress tends to produce unlimited, continuous
|
||||||
|
deformation**
|
||||||
|
|
||||||
|
## Shear Forces
|
||||||
|
|
||||||
|
- For a solid, application of shear stress causes a deformation which, if not too great (elastic),
|
||||||
|
is not permanent and solid regains original positon
|
||||||
|
- For a fluid, continuious deformation takes place as the molecules slide over each other until the
|
||||||
|
force is removed
|
||||||
|
- **A fluid is a substance for wich a shear stress tends to produce unlimited, continuous
|
||||||
|
deformation**
|
||||||
|
|
||||||
|
## Density
|
||||||
|
|
||||||
|
- Density: $$ \rho = \frac m V $$
|
||||||
|
- Specific Density: $$ v = \frac 1 \rho $$
|
||||||
|
|
||||||
|
### Obtaining Density
|
||||||
|
|
||||||
|
- Find mass of a given volume or volume of a given mass
|
||||||
|
- This gives average density and assumes density is the same throughout
|
||||||
|
|
||||||
|
- This is not always the case (like in chocolate chip ice cream)
|
||||||
|
- Bulk density is often used to refer to average density
|
||||||
|
|
||||||
|
### Engineering Density
|
||||||
|
|
||||||
|
- Matter is not continuous on molecular scale
|
||||||
|
- For fluids in constant motion, we take a time average
|
||||||
|
- For most practical purposes, matter is considered to be homogenous and time averaged
|
||||||
|
|
||||||
|
## Pressure
|
||||||
|
|
||||||
|
- Pressure is a scalar quantity
|
||||||
|
- Gases cannot sustain tensile stress, liquids a negligible amount
|
||||||
|
|
||||||
|
- There is a certain amount of energy associated with the random continuous motion of the molecules
|
||||||
|
- Higher pressure fluids tend to have more energy in their molecules
|
||||||
|
|
||||||
|
### How Does Molecular Motion Create Force?
|
||||||
|
|
||||||
|
- When molecules interact with each other, there is no net force
|
||||||
|
- When they interact with walls, there is a resultant force perpendicular to the surface
|
||||||
|
- Pressure caused my molecule: $$ p = \frac {\delta{}F}{\delta{}A} $$
|
||||||
|
- If we want total force, we have to add them all up
|
||||||
|
- $$ F = \int \mathrm{d}F = \int p\, \mathrm{d}A $$
|
||||||
|
|
||||||
|
- If pressure is constant, then this integrates to $$ F = pA $$
|
||||||
|
- These equations can be used if pressure is constant of average value is appropriate
|
||||||
|
- For many cases in fluids pressure is not constant
|
||||||
|
|
||||||
|
### Pressure Variation in a Static Fluid
|
||||||
|
|
||||||
|
- A fluid at rest has constant pressure horizontally
|
||||||
|
- That's why liquid surfaces are flat
|
||||||
|
- But fluids at rest do have a vertical gradient, where lower parts have higher presure
|
||||||
|
|
||||||
|
### How Does Pressure Vary with Depth?
|
||||||
|
|
||||||
|
![From UoN MMME1048 Fluid Mechanics Notes](./images/vimscrot-2021-10-06T10:51:51,499044519+01:00.png)
|
||||||
|
|
||||||
|
Let fluid pressure be p at height $z$, and $p + \delta p$ at $z + \delta z$.
|
||||||
|
|
||||||
|
Force $F_z$ acts upwards to support the fluid, countering pressure $p$.
|
||||||
|
|
||||||
|
Force $F_z + \delta F_z$acts downwards to counter pressure $p + \delta p$ and comes from the weight
|
||||||
|
of the liquid above.
|
||||||
|
|
||||||
|
Now:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
F_z &= p\delta x\delta y \\
|
||||||
|
F_z + \delta F_z &= (p + \delta p) \delta x \delta y \\
|
||||||
|
\therefore \delta F_z &= \delta p(\delta x\delta y)
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Resolving forces in z direction:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
F_z - (F_z + \delta F_z) - g\delta m &= 0 \\
|
||||||
|
\text{but } \delta m &= \rho\delta x\delta y\delta z \\
|
||||||
|
\therefore -\delta p(\delta x\delta y) &= g\rho(\delta x\delta y\delta z) \\
|
||||||
|
\text{or } \frac{\delta p}{\delta z} &= -\rho g \\
|
||||||
|
\text{as } \delta z \rightarrow 0,\, \frac{\delta p}{\delta z} &\rightarrow \frac{dp}{dz}\\
|
||||||
|
\therefore \frac{dp}{dz} &= -\rho g\\
|
||||||
|
\Delta p &= \rho g\Delta z
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
The equation applies for any fluid.
|
||||||
|
The -ve sign indicates that as $z$, height, increases, $p$, pressure, decreases.
|
||||||
|
|
||||||
|
### Absolute and Gauge Pressure
|
||||||
|
|
||||||
|
- Absolute Pressure is measured relative to zero (a vacuum)
|
||||||
|
- Guage pressure = absolute pressure - atmospheric pressure
|
||||||
|
|
||||||
|
- Often used in industry
|
||||||
|
|
||||||
|
- If abs. pressure = 3 bar and atmospheric pressure is 1 bar, then gauge pressure = 2 bar
|
||||||
|
- Atmospheric pressure changes with altitude
|
||||||
|
|
||||||
|
## Compressibility
|
||||||
|
|
||||||
|
- All fluids are compressible, especially gasses
|
||||||
|
- Most liquids can be considered **incompressible** most of the time (and will be in MMME1048, but
|
||||||
|
may not be in future modules)
|
||||||
|
|
||||||
|
## Surface Tension
|
||||||
|
|
||||||
|
- In a liquid, molecules are held together by molecular attraction
|
||||||
|
- At a boundry between two fluids this creates "surface tension"
|
||||||
|
- Surface tension usually has the symbol $$\gamma$$
|
||||||
|
|
||||||
|
## Ideal Gas
|
||||||
|
|
||||||
|
- No real gas is perfect, although many are similar
|
||||||
|
- We define a specific gas constant to allow us to analyse the behaviour of a specific gas:
|
||||||
|
|
||||||
|
$$ R = \frac {\tilde R}{\tilde m} $$
|
||||||
|
|
||||||
|
(Universal Gas Constant / molar mass of gas)
|
||||||
|
|
||||||
|
- Perfect gas law
|
||||||
|
|
||||||
|
$$pV=mRT$$
|
||||||
|
|
||||||
|
or
|
||||||
|
|
||||||
|
$$ p = \rho RT$$
|
||||||
|
|
||||||
|
- Pressure always in Pa
|
||||||
|
- Temperature always in K
|
||||||
|
|
||||||
|
## Units and Dimentional Analysis
|
||||||
|
|
||||||
|
- It is usually better to use SI units
|
||||||
|
- If in doubt, DA can be useful to check that your answer makes sense
|
||||||
|
|
||||||
|
# Fluid Statics
|
||||||
|
|
||||||
|
## Manometers
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-10-13T09:09:32,037006075+01:00.png)
|
||||||
|
|
||||||
|
$$p_{1,gauge} = \rho g(z_2-z_1)$$
|
||||||
|
|
||||||
|
- Manometers work on the principle that pressure along any horizontal plane through a continuous
|
||||||
|
fluid is constant
|
||||||
|
- Manometers can be used to measure the pressure of a gas, vapour, or liquid
|
||||||
|
- Manometers can measure higher pressures than a piezometer
|
||||||
|
- Manometer fluid and working should be immiscible (don't mix)
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-10-13T09:14:59,628661490+01:00.png)
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
p_A &= p_{A'} \\
|
||||||
|
p_{bottom} &= p_{top} + \rho gh \\
|
||||||
|
\rho_1 &= density\,of\,fluid\,1 \\
|
||||||
|
\rho_2 &= density\,of\,fluid\,2
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Left hand side:
|
||||||
|
|
||||||
|
$$p_A = p_1 + \rho_1g\Delta z_1$$
|
||||||
|
|
||||||
|
Right hand side:
|
||||||
|
|
||||||
|
$$p_{A'} = p_{at} + \rho_2g\Delta z_2$$
|
||||||
|
|
||||||
|
Equate and rearrange:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
p_1 + \rho_1g\Delta z_1 &= p_{at} + \rho_2g\Delta z_2 \\
|
||||||
|
p_1-p_{at} &= g(\rho_2\Delta z_2 - \rho_1\Delta z_1) \\
|
||||||
|
p_{1,gauge} &= g(\rho_2\Delta z_2 - \rho_1\Delta z_1)
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
If $\rho_a << \rho_2$:
|
||||||
|
|
||||||
|
$$\rho_{1,gauge} \approx \rho_2g\Delta z_2$$
|
||||||
|
|
||||||
|
### Differential U-Tube Manometer
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-10-13T09:37:02,070474894+01:00.png)
|
||||||
|
|
||||||
|
- Used to find the difference between two unknown pressures
|
||||||
|
- Can be used for any fluid that doesn't react with manometer fluid
|
||||||
|
- Same principle used in analysis
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
p_A &= p_{A'} \\
|
||||||
|
p_{bottom} &= p_{top} + \rho gh \\
|
||||||
|
\rho_1 &= density\,of\,fluid\,1 \\
|
||||||
|
\rho_2 &= density\,of\,fluid\,2
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Left hand side:
|
||||||
|
|
||||||
|
$$p_A = p_1 + \rho_wg(z_C-z_A)$$
|
||||||
|
|
||||||
|
Right hand side:
|
||||||
|
|
||||||
|
$$p_B = p_2 + \rho_wg(z_C-z_B)$$
|
||||||
|
|
||||||
|
Right hand manometer fluid:
|
||||||
|
|
||||||
|
$$p_{A'} = p_B + \rho_mg(z_B - z_a)$$
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
p_{A'} &= p_2 + \rho_mg(z_C - z_B) + \rho_mg(z_B - zA)\\
|
||||||
|
&= p_2 + \rho_mg(z_C - z_B) + \rho_mg\Delta z \\
|
||||||
|
\\
|
||||||
|
p_A &= p_{A'} \\
|
||||||
|
p_1 + \rho_wg(z_C-z_A) &= p_2 + \rho_mg(z_C - z_B) + \rho_mg\Delta z \\
|
||||||
|
p_1 - p_2 &= \rho_wg(z_C-z_B-z_C+z_A) + \rho_mg\Delta z \\
|
||||||
|
&= \rho_wg(z_A-z_B) + \rho_mg\Delta z \\
|
||||||
|
&= -\rho_wg\Delta z + \rho_mg\Delta z
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
### Angled Differential Manometer
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-10-13T09:56:15,656796805+01:00.png)
|
||||||
|
|
||||||
|
- If the pipe is sloped then
|
||||||
|
|
||||||
|
$$p_1-p_2 = (\rho_m-\rho_w)g\Delta z + \rho_wg(z_{C2} - z_{C1})$$
|
||||||
|
|
||||||
|
- $p_1 > p_2$ as $p_1$ is lower
|
||||||
|
- If there is no flow along the tube, then
|
||||||
|
|
||||||
|
$$p_1 = p_2 + \rho_wg(z_{C2} - z_{C1})$$
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
### Exercise Sheet 1
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
1. If 4 m$^3$ of oil weighs 35 kN calculate its density and relative density.
|
||||||
|
Relative density is a term used to define the density of a fluid relative
|
||||||
|
|
||||||
|
> $$ \frac{35000}{9.81\times4} = 890 \text{ kgm}^{-3} $$
|
||||||
|
>
|
||||||
|
> $$1000 - 891.9... = 108 \text{ kgm}^{-3}$$
|
||||||
|
|
||||||
|
2. Find the pressure relative to atmospheric experienced by a diver
|
||||||
|
working on the sea bed at a depth of 35 m.
|
||||||
|
Take the density of sea water to be 1030 kgm$^{-3}$.
|
||||||
|
|
||||||
|
> $$
|
||||||
|
> \rho gh = 1030\times 9.81 \times 35 = 3.5\times10^5
|
||||||
|
> $$
|
||||||
|
|
||||||
|
3. An open glass is sitting on a table, it has a diameter of 10 cm.
|
||||||
|
If water up to a height of 20 cm is now added calculate the force exerted onto the table by
|
||||||
|
the addition of the water.
|
||||||
|
|
||||||
|
> $$V_{cylinder} = \pi r^2h$$
|
||||||
|
> $$m_{cylinder} = \rho\pi r^2h$$
|
||||||
|
> $$W_{cylinder} = \rho g\pi r^2h = 1000\times9.8\pi\times0.05^2\times0.2 = 15.4 \text{ N} $$
|
||||||
|
|
||||||
|
4. A closed rectangular tank with internal dimensions 6m x 3m x 1.5m
|
||||||
|
high has a vertical riser pipe of cross-sectional area 0.001 m2 in
|
||||||
|
the upper surface (figure 1.4). The tank and riser are filled with
|
||||||
|
water such that the water level in the riser pipe is 3.5 m above the
|
||||||
|
|
||||||
|
Calulate:
|
||||||
|
|
||||||
|
i. The gauge pressure at the base of the tank.
|
||||||
|
|
||||||
|
> $$\rho gh = 1000\times9.81\times(1.5+3.5) = 49 \text{ kPa}$$
|
||||||
|
|
||||||
|
ii. The gauge pressure at the top of the tank.
|
||||||
|
|
||||||
|
> $$\rho gh = 1000\times9.81\times3.5 = 34 \text{ kPa}$$
|
||||||
|
|
||||||
|
iii. The force exercted on the base of the tank due to gauge water pressure.
|
||||||
|
|
||||||
|
> $$F = p\times A = 49\times10^3\times6\times3 = 8.8\times10^5 \text{ N}$$
|
||||||
|
|
||||||
|
iv. The weight of the water in the tank and riser.
|
||||||
|
|
||||||
|
> $$V = 6\times3\times1.5 + 0.001\times3.5 = 27.0035$$
|
||||||
|
> $$W = \rho gV = 1000\times9.8\times27.0035 = 2.6\times10^5\text{ N}$$
|
||||||
|
|
||||||
|
v. Explain the difference between (iii) and (iv).
|
||||||
|
|
||||||
|
*(It may be helpful to think about the forces on the top of the tank)*
|
||||||
|
|
||||||
|
> The pressure at the top of the tank is higher than atmospheric pressure because of the
|
||||||
|
> riser.
|
||||||
|
> This means there is an upwards force on the top of tank.
|
||||||
|
> The difference between the force acting up and down due to pressure is equal to the
|
||||||
|
> weight of the water.
|
||||||
|
|
||||||
|
6. A double U-tube manometer is connected to a pipe as shown below.
|
||||||
|
|
||||||
|
Taking the dimensions and fluids as indicated; calculate
|
||||||
|
the absolute pressure at point A (centre of the pipe).
|
||||||
|
|
||||||
|
Take atmospheric pressure as 1.01 bar and the density of mercury as 13600 kgm$^{-3}$.
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-10-13T10:42:52,999793176+01:00.png)
|
||||||
|
|
||||||
|
> \begin{align*}
|
||||||
|
P_B &= P_A + 0.4\rho_wg &\text{(1)}\\
|
||||||
|
P_C = P_{C'} &= P_B - 0.2\rho_mg &\text{(2)}\\
|
||||||
|
P_D = P_{at} &= P_A + 0.4\rho_wg &\text{(3)}\\
|
||||||
|
\\
|
||||||
|
\text{(2) into (3)} &\rightarrow P_B -0.2\rho_mg-0.1\rho_wg = P_{at} &\text{(4)}\\
|
||||||
|
\text{(1) into (4)} &\rightarrow P_A + 0.4\rho_wg - 0.2\rho_mg - 0.1\rho_wg = P_{at} \\
|
||||||
|
\\
|
||||||
|
P_A &= P_{at} + 0.1\rho_wg + 0.2\rho_mg - 0.4\rho_wg \\
|
||||||
|
&= P_{at} + g(0.2\rho_m - 0.3\rho_w) \\
|
||||||
|
&= 1.01\times10^5 + 9.81(0.2\times13600 - 0.3\times1000)\\
|
||||||
|
&= 124.7\text{ kPa}
|
||||||
|
> \end{align*}
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## Submerged Surfaces
|
||||||
|
|
||||||
|
### Prepatory Maths
|
||||||
|
|
||||||
|
#### Integration as Summation
|
||||||
|
|
||||||
|
#### Centroids
|
||||||
|
|
||||||
|
- For a 3D body, the centre of gravity is the point at which all the mass can be considered to act
|
||||||
|
- For a 2D lamina (thin, flat plate) the centroid is the centre of area, the point about which the
|
||||||
|
lamina would balance
|
||||||
|
|
||||||
|
To find the location of the centroid, take moments (of area) about a suitable reference axis:
|
||||||
|
|
||||||
|
$$moment\,of\,area = moment\,of\,mass$$
|
||||||
|
|
||||||
|
(making the assumption that the surface has a unit mass per unit area)
|
||||||
|
|
||||||
|
$$moment\,of\,mass = mass\times distance\,from\,point\,acting\,around$$
|
||||||
|
|
||||||
|
Take the following lamina:
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-10-20T10:01:30,080819382+01:00.png)
|
||||||
|
|
||||||
|
1. Split the lamina into elements parallel to the chosen axis
|
||||||
|
2. Each element has area $\delta A = w\delta y$
|
||||||
|
3. The moment of area ($\delta M$) of the element is $\delta Ay$
|
||||||
|
4. The sum of moments of all the elements is equal to the moment $M$ obtained by assuing all the
|
||||||
|
area is located at the centroid or:
|
||||||
|
|
||||||
|
$$Ay_c = \int_{area} \! y\,\mathrm{d}A$$
|
||||||
|
|
||||||
|
or:
|
||||||
|
|
||||||
|
$$y_c = \frac 1 A \int_{area} \! y\,\mathrm{d}A$$
|
||||||
|
|
||||||
|
- $\int y\,\mathrm{d}A$ is known as the first moment of area
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
##### Example 1
|
||||||
|
|
||||||
|
Determine the location of the centroid of a rectangular lamina.
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
###### Determining Location in $y$ direction
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-10-20T10:14:17,688774145+01:00.png)
|
||||||
|
|
||||||
|
1. Take moments for area about $OO$
|
||||||
|
|
||||||
|
$$\delta M = y\delta A = y(b\delta y)$$
|
||||||
|
|
||||||
|
2. Integrate to find all strips
|
||||||
|
|
||||||
|
$$M = b\int_0^d\! y \,\mathrm{d}y = b\left[\frac{y^2}2\right]_0^d = \frac{bd^2} 2$$
|
||||||
|
|
||||||
|
($b$ can be taken out the integral as it is constant in this example)
|
||||||
|
|
||||||
|
but also $$M = (area)(y_c) = bdy_c$$
|
||||||
|
|
||||||
|
so $$y_c = \frac 1 {bd} \frac {bd} 2 = \frac d 2$$
|
||||||
|
|
||||||
|
###### Determining Location in $x$ direction
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-10-20T10:24:48,372189101+01:00.png)
|
||||||
|
|
||||||
|
1. Take moments for area about $O'O'$:
|
||||||
|
|
||||||
|
$$\delta M = x\delta A = x(d\delta x)$$
|
||||||
|
|
||||||
|
2. Integrate
|
||||||
|
|
||||||
|
$$M_{O'O'} = d\int_0^b\! x \,\mathrm{d}x = d\left[\frac{x^2} 2\right]_0^b = \frac{db^2} 2$$
|
||||||
|
|
||||||
|
but also $$M_{O'O'} = (area)(x_c) = bdx_c$$
|
||||||
|
|
||||||
|
so $$x_c = \frac{db^2}{2bd} = \frac b 2$$
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### Horizontal Submereged Surfaces
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-10-20T10:33:16,783724117+01:00.png)
|
||||||
|
|
||||||
|
Assumptions for horizontal lamina:
|
||||||
|
|
||||||
|
- Constant pressure acts over entire surface of lamina
|
||||||
|
- Centre of pressure will coincide with centre of area
|
||||||
|
- $total\,force = pressure\times area$
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-10-20T10:36:12,520683729+01:00.png)
|
||||||
|
|
||||||
|
### Vertical Submerged Surfaces
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-10-20T11:05:33,235642932+01:00.png)
|
||||||
|
|
||||||
|
- A vertical submerged plate does experience uniform pressure
|
||||||
|
- Centroid of pressure and area are not coincident
|
||||||
|
- Centroid of pressure is always below centroid of area for a vertical plate
|
||||||
|
- No shear forces, so all hydrostatic forces are perpendicular to lamina
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-10-20T11:07:52,929126609+01:00.png)
|
||||||
|
|
||||||
|
Force acting on small element:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\delta F &= p\delta A \\
|
||||||
|
&= \rho gh\delta A \\
|
||||||
|
&= \rho gh w\delta h
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Therefore total force is
|
||||||
|
|
||||||
|
$$F_p = \int_{area}\! \rho gh \,\mathrm{d}A = \int_{h_1}^{h_2}\! \rho ghw\,\mathrm{d}h$$
|
||||||
|
|
||||||
|
#### Finding Line of Action of the Force
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-10-20T11:15:51,200869760+01:00.png)
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\delta M_{OO} &= \delta Fh = (\rho gh\delta A)h \\
|
||||||
|
&= \rho gh^2\delta A = \rho gh^2w\delta h \\
|
||||||
|
\\
|
||||||
|
M_{OO} &= F_py_p = \int_{area}\! \rho gh^2 \,\mathrm{d}A \\
|
||||||
|
&= \int_{h1}^{h2}\! \rho gh^2w \,\mathrm{d}h \\
|
||||||
|
\\
|
||||||
|
y_p = \frac{M_{OO}}{F_p}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
## Buoyancy
|
||||||
|
|
||||||
|
### Archimedes Principle
|
||||||
|
|
||||||
|
> The resultant upwards force (buoyancy force) on a body wholly or partially immersed in a fluid is
|
||||||
|
> equal to the weight of the displaced fluid.
|
||||||
|
|
||||||
|
When an object is in equilibrium the forces acting on it balance.
|
||||||
|
For a floating object, the upwards force equals the weight:
|
||||||
|
|
||||||
|
$$mg = \rho Vg$$
|
||||||
|
|
||||||
|
Where $\rho$ is the density of the fluid, and $V$ is the volume of displaced fluid.
|
||||||
|
|
||||||
|
### Immersed Bodies
|
||||||
|
|
||||||
|
As pressure increases with depth, the fluid exerts a resultant upward force on a body.
|
||||||
|
There is no horizontal component of the buoyancy force because the vertiscal projection of the body
|
||||||
|
is the same in both directions.
|
||||||
|
|
||||||
|
### Rise, Sink, or Float?
|
||||||
|
|
||||||
|
- $F_B = W$ \rightarrow equilirbrium (floating)
|
||||||
|
- $F_B > W$ \rightarrow body rises
|
||||||
|
- $F_B < W$ \rightarrow body sinks
|
||||||
|
|
||||||
|
### Centre of Buoyancy
|
||||||
|
|
||||||
|
Buoyancy force acts through the centre of gravity of the volume of fluid displaced.
|
||||||
|
This is known as the centre of buoyancy.
|
||||||
|
The centre of buoyancy does not in general correspond to the centre of gravity of the body.
|
||||||
|
|
||||||
|
If the fluid density is constant the centre of gravity of the displaced fluid is at the centroid of
|
||||||
|
the immersed volume.
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-12-21T15:08:22,285753421+00:00.png)
|
||||||
|
|
After Width: | Height: | Size: 64 KiB |
After Width: | Height: | Size: 25 KiB |
After Width: | Height: | Size: 47 KiB |
After Width: | Height: | Size: 58 KiB |
After Width: | Height: | Size: 59 KiB |
After Width: | Height: | Size: 68 KiB |
After Width: | Height: | Size: 21 KiB |
After Width: | Height: | Size: 12 KiB |
After Width: | Height: | Size: 18 KiB |
After Width: | Height: | Size: 28 KiB |
After Width: | Height: | Size: 27 KiB |
After Width: | Height: | Size: 20 KiB |
After Width: | Height: | Size: 69 KiB |
After Width: | Height: | Size: 11 KiB |
After Width: | Height: | Size: 35 KiB |
After Width: | Height: | Size: 56 KiB |
After Width: | Height: | Size: 104 KiB |