notes on thick walled cylinders
This commit is contained in:
parent
7166aecc6f
commit
7d9ad8cbf0
@ -9,3 +9,51 @@ lecture_notes: [ ./lecture_notes/MMME2053_TC_Notes.pdf ]
|
|||||||
exercise_sheets: [ ./exercise_sheets/Thick Cylinders Exercise Sheet.pdf, ./exercise_sheets/Thick Walled Cylinders Exercise Sheet Solutions.pdf ]
|
exercise_sheets: [ ./exercise_sheets/Thick Cylinders Exercise Sheet.pdf, ./exercise_sheets/Thick Walled Cylinders Exercise Sheet Solutions.pdf ]
|
||||||
worked_examples: [ ./worked_examples/MMME2053_TC_WE1.pdf, ./worked_examples/MMME2053_TC_WE2.pdf, ./worked_examples/MMME2053_TC_WE3.pdf ]
|
worked_examples: [ ./worked_examples/MMME2053_TC_WE1.pdf, ./worked_examples/MMME2053_TC_WE2.pdf, ./worked_examples/MMME2053_TC_WE3.pdf ]
|
||||||
---
|
---
|
||||||
|
|
||||||
|
# Lame's Equations
|
||||||
|
|
||||||
|
Derivation in lecture slides 2 (pp. 3-11)
|
||||||
|
|
||||||
|
$$\sigma_h = A + \frac{B}{r^2}$$
|
||||||
|
|
||||||
|
$$\sigma_r = A - \frac{B}{r^2}$$
|
||||||
|
|
||||||
|
where $A$ and $B$ are *Lame's constants* (constants of integration).
|
||||||
|
|
||||||
|
Note that $\sigma_r$ does not vary with radius, $r$.
|
||||||
|
|
||||||
|
## Obtaining Lame's Constants
|
||||||
|
|
||||||
|
The constants can be obtained by using the boundary conditions of the problem:
|
||||||
|
|
||||||
|
At the inner radius ($r = R_i$) the pressure is only opposing the fluid inside:
|
||||||
|
|
||||||
|
$$\sigma_r= -p_i$$
|
||||||
|
|
||||||
|
At the outer radius ($r = R_o$) the pressure is only opposing the fluid outside (e.g. atmospheric
|
||||||
|
pressure):
|
||||||
|
|
||||||
|
$$\sigma_r = -p_o$$
|
||||||
|
|
||||||
|
Therefore:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
-p_i &= C - \frac{D}{R_i^2}
|
||||||
|
-p_o &= C - \frac{D}{R_o^2}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
where $C$ and $D$ are constants which can be determined.
|
||||||
|
|
||||||
|
## Cylinder with Closed Ends
|
||||||
|
|
||||||
|
$$\sigma_z = \frac{R_i^2p_i - R_o^2p_o}{R_o^2-R_i^2}$$
|
||||||
|
|
||||||
|
## Cylinder with Pistons
|
||||||
|
|
||||||
|
No axial load is transferred to the cylinder.
|
||||||
|
|
||||||
|
$$\sigma_z = 0$$
|
||||||
|
|
||||||
|
## Solid Cylinder
|
||||||
|
|
||||||
|
$$\sigma_r = \sigma_\theta = A$$
|
||||||
|
Loading…
Reference in New Issue
Block a user