add notes on integration
This commit is contained in:
parent
cef225ae95
commit
7fe78254b3
@ -173,7 +173,7 @@ There may be more than one $y$ value for each $x$ value.
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
# Differentation
|
# Differentiation
|
||||||
|
|
||||||
The derivative of the function $f(x)$ is denoted by:
|
The derivative of the function $f(x)$ is denoted by:
|
||||||
|
|
||||||
@ -333,7 +333,7 @@ $$f'(a) = 0 \text{ and } f''(a) = 0 \text { and } f'''(a) \ne 0$$
|
|||||||
|
|
||||||
![](./images/vimscrot-2021-12-27T15:38:29,395666506+00:00.png)
|
![](./images/vimscrot-2021-12-27T15:38:29,395666506+00:00.png)
|
||||||
|
|
||||||
# Taylor series
|
# Approximating with the Taylor series
|
||||||
|
|
||||||
The expansion
|
The expansion
|
||||||
|
|
||||||
@ -445,3 +445,331 @@ $$f(x) = f(a) + \frac 1 2 f''(a)(x-a)^2 + \cdots$$
|
|||||||
have a maximum
|
have a maximum
|
||||||
- If $f''(a) = 0$ then we must include a higer order terms to determine what happens
|
- If $f''(a) = 0$ then we must include a higer order terms to determine what happens
|
||||||
have a minimum
|
have a minimum
|
||||||
|
|
||||||
|
# Integration
|
||||||
|
|
||||||
|
Integration is the reverse of [differentiation](#differentiation).
|
||||||
|
|
||||||
|
Take velocity and displacement as an example:
|
||||||
|
|
||||||
|
$$\int\! v \mathrm dt = s + c$$
|
||||||
|
|
||||||
|
where $c$ is the constant of integration, which is required for
|
||||||
|
[indefinite integrals](#indefinite-integrals).A
|
||||||
|
|
||||||
|
## Definite Integrals
|
||||||
|
|
||||||
|
The definite integral of a function $f(x)$ in the range $a \le x \le b$ is denoted be:
|
||||||
|
|
||||||
|
$$\int^b_a \! f(x) \,\mathrm dx$$
|
||||||
|
|
||||||
|
If $f(x) = F'(x)$ ($f(x)$ is the derivative of $F(x)$) then
|
||||||
|
|
||||||
|
$$\int^b_a \! f(x) \,\mathrm dx = \left[F(x)\right]^b_a = F(b) - F(a)$$
|
||||||
|
|
||||||
|
## Area and Integration
|
||||||
|
|
||||||
|
Approximate the area under a smooth curve using a large number of narrow rectangles.
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-12-28T15:18:59,911868873+00:00.png)
|
||||||
|
|
||||||
|
Area under curve $\approx \sum_{n} f(x_n)\Delta x_n$.
|
||||||
|
|
||||||
|
As the rectangles get more numerous and narrow, the approximation approaches the real area.
|
||||||
|
|
||||||
|
The limiting value is denoted
|
||||||
|
|
||||||
|
$$\approx \sum_{n} f(x_n)\Delta x_n \rightarrow \int^b_a\! f(x) \mathrm dx$$
|
||||||
|
|
||||||
|
This explains the notation used for integrals.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
#### Example 1
|
||||||
|
|
||||||
|
Calculate the area between these two curves:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
y &= f_1(x) = 2 - x^2 \\
|
||||||
|
y &= f_2(x) = x
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-12-28T15:25:12,556743251+00:00.png)
|
||||||
|
|
||||||
|
1. Find the crossing points $P$ and $Q$
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
f_1(x) &= f_2(x) \\
|
||||||
|
x &= 2-x^2 \\
|
||||||
|
x &= 1 \\
|
||||||
|
x &= -2
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
2. Since $f_1(x) \ge f_2(x)$ between $P$ and $Q$
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
A &= \int^1_{-2}\! (f_1(x) - f_2(x)) \mathrm dx \\
|
||||||
|
&= \int^1_{-2}\! (2 - x^2 - x) \mathrm dx \\
|
||||||
|
&= \left[ 2x - \frac 13 x^3 - \frac 12 x^2 \right]^1_{-2} \\
|
||||||
|
&= \left(2 - \frac 13 - \frac 12 \right) - \left( -4 + \frac 83 - \frac 42 \right) \\
|
||||||
|
&= \frac 92
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## Techniques for Integration
|
||||||
|
|
||||||
|
Integration requires multiple techniques and methods to do correctly because it is a PITA.
|
||||||
|
|
||||||
|
These are best explained by examples so try to follow those rather than expect and explanation.
|
||||||
|
|
||||||
|
### Integration by Substitution
|
||||||
|
|
||||||
|
Integration but substitution lets us integrate functions of functions.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
#### Example 1
|
||||||
|
|
||||||
|
Find
|
||||||
|
|
||||||
|
$$I = \int\!(5x - 1)^3 \mathrm dx$$
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
1. Let $w(x) = 5x - 1$
|
||||||
|
2.
|
||||||
|
\begin{align*}
|
||||||
|
\frac{\mathrm d}{\mathrm dx} w &= 5 \\
|
||||||
|
\frac 15 \mathrm dw &= \mathrm dx
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
3. The integral is then
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
I &= \int\! w^3 \frac 15 \mathrm dw \\
|
||||||
|
&= \frac 15 \cdot \frac 14 \cdot w^4 + c \\
|
||||||
|
&= \frac{1}{20}w^4 + c
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
4. Finally substitute $w$ out
|
||||||
|
|
||||||
|
$$I = \frac{(5x-1)^4}{20} + c$$
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
#### Example 2
|
||||||
|
|
||||||
|
Find
|
||||||
|
|
||||||
|
$$I = \int\! \cos x \sqrt{\sin x + 1} \mathrm dx$$
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
1. Let
|
||||||
|
|
||||||
|
$$w(x) = \sin x + 1$$
|
||||||
|
|
||||||
|
2. Then
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac{\mathrm d}{\mathrm dx} w = \cos x \\
|
||||||
|
\mathrm dw = \cos x \mathrm dx \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
3. The integral is now
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
I &= \int\! \sqrt w \,\mathrm dw \\
|
||||||
|
&= \int\! w^{\frac12} \,\mathrm dw \\
|
||||||
|
&= \frac23w^{\frac32} + c
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
4. Finally substitute $w$ out to get:
|
||||||
|
|
||||||
|
$$I = \frac23 (\sin x + 1)^{\frac32} + c$$
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
#### Example 3
|
||||||
|
|
||||||
|
Find
|
||||||
|
|
||||||
|
$$I = \int^{\frac\pi2}_0\! \cos x \sqrt{\sin x + 1} \,\mathrm dx$$
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
1. Use the previous example to get to
|
||||||
|
|
||||||
|
$$I = \int^2_1\! \sqrt w \,\mathrm dw = \frac23w^{\frac32} + c$$
|
||||||
|
|
||||||
|
2. Since $w(x) = \sin x + 1$ the limits are:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
x = 0 &\rightarrow w = 1\\
|
||||||
|
x = \frac\pi2 &\rightarrow w = 2
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
3. This gives us
|
||||||
|
|
||||||
|
$$I = \left[ \frac23w^{\frac32} \right]^2_1 = \frac23 (2^{\frac23} = 1)$$
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
#### Example 4
|
||||||
|
|
||||||
|
Find
|
||||||
|
|
||||||
|
$$I = \int^1_0\! \sqrt{1 - x^2} \,\mathrm dx$$
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
1. Try a trigonmetrical substitution:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
x &= \sin w \\
|
||||||
|
\\
|
||||||
|
\frac{\mathrm dx}{\mathrm dw} = \cos w \\
|
||||||
|
\mathrm dx = \cos 2 \,\mathrm dw \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
2.
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
x=0 &\rightarrow w=0 \\
|
||||||
|
x=1 &\rightarrow w=\frac\pi2
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
3. Therefore
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
I &= \int^{\frac\pi2}_0\! \sqrt{1 - \sin^2 w} \cos w \,\mathrm dw \\
|
||||||
|
&= \int^{\frac\pi2}_0\! \cos^w w \,\mathrm dw
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
But $\cos(2w) = 2\cos^2w - 1$ so:
|
||||||
|
|
||||||
|
$$\cos^2w = \frac12 \cos(2w) + \frac12$$
|
||||||
|
|
||||||
|
|
||||||
|
Hence
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
I &= \int^{\frac\pi2}_0\! \frac12 \cos(2w) + \frac12 \,\mathrm dw \\
|
||||||
|
&= \left[ \frac14 \sin(2w) + \frac w2 \right]^{\frac\pi2}_0 \\
|
||||||
|
&= \left( \frac14 \sin\pi + \frac\pi4 \right) - 0 \\
|
||||||
|
&= \frac\pi4
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
### Integration by Parts
|
||||||
|
|
||||||
|
$$uv = \int\! u\frac{\mathrm dv}{\mathrm dx} \,\mathrm dx + \int\! \frac{\mathrm du}{\mathrm dx}v \,\mathrm dx$$
|
||||||
|
|
||||||
|
or
|
||||||
|
|
||||||
|
$$\int\! u\frac{\mathrm dv}{\mathrm dx} \,\mathrm dx = uv - \int\! \frac{\mathrm du}{\mathrm dx}v \,\mathrm dx$$
|
||||||
|
|
||||||
|
This technique is derived from integrating the product rule.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
#### Example 1
|
||||||
|
|
||||||
|
Find
|
||||||
|
|
||||||
|
$$I = \int\! \ln x \,\mathrm dx$$
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
1. Use
|
||||||
|
|
||||||
|
$$\int\! u\frac{\mathrm dv}{\mathrm dx} \,\mathrm dx = uv - \int\! \frac{\mathrm du}{\mathrm dx}v \,\mathrm dx$$
|
||||||
|
|
||||||
|
2. Set $u = \ln x$
|
||||||
|
and $v' = 1$.
|
||||||
|
|
||||||
|
3. This means that $u' = \frac1x$ and $v = x$.
|
||||||
|
4.
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
I &= x\ln x - \int\! x\cdot\frac1x \,\mathrm dx + c \\
|
||||||
|
&= x\ln x - \int\! \,\mathrm dx + c \\
|
||||||
|
&= x\ln x - x + c \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
# Application of Integration
|
||||||
|
|
||||||
|
## Differential Equations
|
||||||
|
|
||||||
|
Consider the equation
|
||||||
|
|
||||||
|
$$\frac{\mathrm dy}{\mathrm dx} = y^2$$
|
||||||
|
|
||||||
|
To find $y$, is not a straightforward integration:
|
||||||
|
|
||||||
|
$$y = \int\!y^2 \,\mathrm dx$$
|
||||||
|
|
||||||
|
The equation above does not solve for $y$ as we can't integrate the right until we know $y$...
|
||||||
|
which is what we're trying to find.
|
||||||
|
|
||||||
|
This is an example of a first order differential equation.
|
||||||
|
The general form is:
|
||||||
|
|
||||||
|
$$\frac{\mathrm dy}{\mathrm dx} = F(x, y)$$
|
||||||
|
|
||||||
|
### Separable Differential Equations
|
||||||
|
|
||||||
|
A first order diferential equation is called *separable* if it is of the form
|
||||||
|
|
||||||
|
$$\frac{\mathrm dy}{\mathrm dx} = f(x)g(y)$$
|
||||||
|
|
||||||
|
We can solve these by rearranging:
|
||||||
|
|
||||||
|
$$\frac1{g(y} \cdot \frac{\mathrm dy}{\mathrm dx} = f(x)$$
|
||||||
|
|
||||||
|
$$\int\! \frac1{g(y)} \,\mathrm dy = \int\! f(x) \,\mathrm dx + c$$
|
||||||
|
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
#### Example 1
|
||||||
|
|
||||||
|
Find $y$ such that
|
||||||
|
|
||||||
|
$$\frac{\mathrm dy}{\mathrm dx} = ky$$
|
||||||
|
|
||||||
|
where $k$ is a constant.
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
Rearrange to get
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\int\! \frac1y \,\mathrm dy &= \int\! k \mathrm dx + c \\
|
||||||
|
\ln y &= kx + c
|
||||||
|
y &= e^{kx + c} = e^ce^{kx} \\
|
||||||
|
&= Ae^{kx}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
where $A = e^c$ is an arbitrary constant.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
Binary file not shown.
After Width: | Height: | Size: 33 KiB |
Binary file not shown.
After Width: | Height: | Size: 23 KiB |
Loading…
Reference in New Issue
Block a user