Update headers

This commit is contained in:
Akbar Rahman 2021-10-21 10:20:31 +01:00
parent 8a059f5a8e
commit 8a92779a67
Signed by: alvierahman90
GPG Key ID: 20609519444A1269
2 changed files with 92 additions and 5 deletions

View File

@ -5,9 +5,9 @@ title: MMME1026 // Mathematics for Engineering
tags: [ uni, nottingham, mmme1026, maths, complex_numbers ]
---
# Lecture 1 // Complex Numbers (2021-10-04)
# Complex Numbers
## Complex Numbers
## What is a Complex Number?
- $i$ is the unit imaginary number, which is defined by:
@ -26,7 +26,7 @@ tags: [ uni, nottingham, mmme1026, maths, complex_numbers ]
e.g. $$(3 + 4i) + (1 -2i) = (3+1) + i(4-2) = 2 + 2i$$
### Complex Conjugate
### The Complex Conjugate
Given complex number $z$:
@ -118,8 +118,6 @@ always hold true as there are many solutions.
2. Find a value of $\theta$ such that $\tan \theta = \frac y x$ and check that it is consistent.
If it puts you in the wrong quadrant, add or subtract $\pi$.
# Lecture 2 // Complex Numbers (2021-10-12)
## Exponential Functions
- The exponential function $f(x) = \exp x$ may be wirtten as an infinite series:

View File

@ -244,6 +244,95 @@ p_1 - p_2 &= \rho_wg(z_C-z_B-z_C+z_A) + \rho_mg\Delta z \\
$$p_1 = p_2 + \rho_wg(z_{C2} - z_{C1})$$
<details>
<summary>
## Exercise Sheet 1
</summary>
1. If 4 m$^3$ of oil weighs 35 kN calculate its density and relative density.
Relative density is a term used to define the density of a fluid relative
> $$ \frac{35000}{9.81\times4} = 890 \text{ kgm}^{-3} $$
>
> $$1000 - 891.9... = 108 \text{ kgm}^{-3}$$
2. Find the pressure relative to atmospheric experienced by a diver
working on the sea bed at a depth of 35 m.
Take the density of sea water to be 1030 kgm$^{-3}$.
> $$
> \rho gh = 1030\times 9.81 \times 35 = 3.5\times10^5
> $$
3. An open glass is sitting on a table, it has a diameter of 10 cm.
If water up to a height of 20 cm is now added calculate the force exerted onto the table by
the addition of the water.
> $$V_{cylinder} = \pi r^2h$$
> $$m_{cylinder} = \rho\pi r^2h$$
> $$W_{cylinder} = \rho g\pi r^2h = 1000\times9.8\pi\times0.05^2\times0.2 = 15.4 \text{ N} $$
4. A closed rectangular tank with internal dimensions 6m x 3m x 1.5m
high has a vertical riser pipe of cross-sectional area 0.001 m2 in
the upper surface (figure 1.4). The tank and riser are filled with
water such that the water level in the riser pipe is 3.5 m above the
Calulate:
i. The gauge pressure at the base of the tank.
> $$\rho gh = 1000\times9.81\times(1.5+3.5) = 49 \text{ kPa}$$
ii. The gauge pressure at the top of the tank.
> $$\rho gh = 1000\times9.81\times3.5 = 34 \text{ kPa}$$
iii. The force exercted on the base of the tank due to gauge water pressure.
> $$F = p\times A = 49\times10^3\times6\times3 = 8.8\times10^5 \text{ N}$$
iv. The weight of the water in the tank and riser.
> $$V = 6\times3\times1.5 + 0.001\times3.5 = 27.0035$$
> $$W = \rho gV = 1000\times9.8\times27.0035 = 2.6\times10^5\text{ N}$$
v. Explain the difference between (iii) and (iv).
*(It may be helpful to think about the forces on the top of the tank)*
> The pressure at the top of the tank is higher than atmospheric pressure because of the
> riser.
> This means there is an upwards force on the top of tank.
> The difference between the force acting up and down due to pressure is equal to the
> weight of the water.
6. A double U-tube manometer is connected to a pipe as shown below.
Taking the dimensions and fluids as indicated; calculate
the absolute pressure at point A (centre of the pipe).
Take atmospheric pressure as 1.01 bar and the density of mercury as 13600 kgm$^{-3}$.
![](./images/vimscrot-2021-10-13T10:42:52,999793176+01:00.png)
> \begin{align*}
P_B &= P_A + 0.4\rho_wg &\text{(1)}\\
P_C = P_{C'} &= P_B - 0.2\rho_mg &\text{(2)}\\
P_D = P_{at} &= P_A + 0.4\rho_wg &\text{(3)}\\
\\
\text{(2) into (3)} &\rightarrow P_B -0.2\rho_mg-0.1\rho_wg = P_{at} &\text{(4)}\\
\text{(1) into (4)} &\rightarrow P_A + 0.4\rho_wg - 0.2\rho_mg - 0.1\rho_wg = P_{at} \\
\\
P_A &= P_{at} + 0.1\rho_wg + 0.2\rho_mg - 0.4\rho_wg \\
&= P_{at} + g(0.2\rho_m - 0.3\rho_w) \\
&= 1.01\times10^5 + 9.81(0.2\times13600 - 0.3\times1000)\\
&= 124.7\text{ kPa}
> \end{align*}
</details>
# Lecture 3 // Submerged Surfaces
## Prepatory Maths