Complete lecture 2 on mmme1048 fluid mechanics

This commit is contained in:
Akbar Rahman 2021-10-13 20:22:29 +01:00
parent e171861da8
commit 9be52cc368
Signed by: alvierahman90
GPG Key ID: 20609519444A1269

View File

@ -151,3 +151,95 @@ The -ve sign indicates that as $z$, height, increases, $p$, pressure, decreases.
- It is usually better to use SI units - It is usually better to use SI units
- If in doubt, DA can be useful to check that your answer makes sense - If in doubt, DA can be useful to check that your answer makes sense
# Lecture 2 // Manometers (2021-10-13)
![](./images/vimscrot-2021-10-13T09:09:32,037006075+01:00.png)
$$p_{1,gauge} = \rho g(z_2-z_1)$$
- Manometers work on the principle that pressure along any horizontal plane through a continuous
fluid is constant
- Manometers can be used to measure the pressure of a gas, vapour, or liquid
- Manometers can measure higher pressures than a piezometer
- Manometer fluid and working should be immiscible (don't mix)
![](./images/vimscrot-2021-10-13T09:14:59,628661490+01:00.png)
\begin{align*}
p_A &= p_{A'} \\
p_{bottom} &= p_{top} + \rho gh \\
\rho_1 &= density\,of\,fluid\,1 \\
\rho_2 &= density\,of\,fluid\,2
\end{align*}
Left hand side:
$$p_A = p_1 + \rho_1g\Delta z_1$$
Right hand side:
$$p_{A'} = p_{at} + \rho_2g\Delta z_2$$
Equate and rearrange:
\begin{align*}
p_1 + \rho_1g\Delta z_1 &= p_{at} + \rho_2g\Delta z_2 \\
p_1-p_{at} &= g(\rho_2\Delta z_2 - \rho_1\Delta z_1) \\
p_{1,gauge} &= g(\rho_2\Delta z_2 - \rho_1\Delta z_1)
\end{align*}
If $\rho_a << \rho_2$:
$$\rho_{1,gauge} \approx \rho_2g\Delta z_2$$
## Differential U-Tube Manometer
![](./images/vimscrot-2021-10-13T09:37:02,070474894+01:00.png)
- Used to find the difference between two unknown pressures
- Can be used for any fluid that doesn't react with manometer fluid
- Same principle used in analysis
\begin{align*}
p_A &= p_{A'} \\
p_{bottom} &= p_{top} + \rho gh \\
\rho_1 &= density\,of\,fluid\,1 \\
\rho_2 &= density\,of\,fluid\,2
\end{align*}
Left hand side:
$$p_A = p_1 + \rho_wg(z_C-z_A)$$
Right hand side:
$$p_B = p_2 + \rho_wg(z_C-z_B)$$
Right hand manometer fluid:
$$p_{A'} = p_B + \rho_mg(z_B - z_a)$$
\begin{align*}
p_{A'} &= p_2 + \rho_mg(z_C - z_B) + \rho_mg(z_B - zA)\\
&= p_2 + \rho_mg(z_C - z_B) + \rho_mg\Delta z \\
\\
p_A &= p_{A'} \\
p_1 + \rho_wg(z_C-z_A) &= p_2 + \rho_mg(z_C - z_B) + \rho_mg\Delta z \\
p_1 - p_2 &= \rho_wg(z_C-z_B-z_C+z_A) + \rho_mg\Delta z \\
&= \rho_wg(z_A-z_B) + \rho_mg\Delta z \\
&= -\rho_wg\Delta z + \rho_mg\Delta z
\end{align*}
## Angled Differential Manometer
![](./images/vimscrot-2021-10-13T09:56:15,656796805+01:00.png)
- If the pipe is sloped then
$$p_1-p_2 = (\rho_m-\rho_w)g\Delta z + \rho_wg(z_{C2} - z_{C1})$$
- $p_1 > p_2$ as $p_1$ is lower
- If there is no flow along the tube, then
$$p_1 = p_2 + \rho_wg(z_{C2} - z_{C1})$$