Complete lecture 2 on mmme1048 fluid mechanics
This commit is contained in:
parent
e171861da8
commit
9be52cc368
@ -151,3 +151,95 @@ The -ve sign indicates that as $z$, height, increases, $p$, pressure, decreases.
|
||||
|
||||
- It is usually better to use SI units
|
||||
- If in doubt, DA can be useful to check that your answer makes sense
|
||||
|
||||
# Lecture 2 // Manometers (2021-10-13)
|
||||
|
||||
![](./images/vimscrot-2021-10-13T09:09:32,037006075+01:00.png)
|
||||
|
||||
$$p_{1,gauge} = \rho g(z_2-z_1)$$
|
||||
|
||||
- Manometers work on the principle that pressure along any horizontal plane through a continuous
|
||||
fluid is constant
|
||||
- Manometers can be used to measure the pressure of a gas, vapour, or liquid
|
||||
- Manometers can measure higher pressures than a piezometer
|
||||
- Manometer fluid and working should be immiscible (don't mix)
|
||||
|
||||
![](./images/vimscrot-2021-10-13T09:14:59,628661490+01:00.png)
|
||||
|
||||
\begin{align*}
|
||||
p_A &= p_{A'} \\
|
||||
p_{bottom} &= p_{top} + \rho gh \\
|
||||
\rho_1 &= density\,of\,fluid\,1 \\
|
||||
\rho_2 &= density\,of\,fluid\,2
|
||||
\end{align*}
|
||||
|
||||
Left hand side:
|
||||
|
||||
$$p_A = p_1 + \rho_1g\Delta z_1$$
|
||||
|
||||
Right hand side:
|
||||
|
||||
$$p_{A'} = p_{at} + \rho_2g\Delta z_2$$
|
||||
|
||||
Equate and rearrange:
|
||||
|
||||
\begin{align*}
|
||||
p_1 + \rho_1g\Delta z_1 &= p_{at} + \rho_2g\Delta z_2 \\
|
||||
p_1-p_{at} &= g(\rho_2\Delta z_2 - \rho_1\Delta z_1) \\
|
||||
p_{1,gauge} &= g(\rho_2\Delta z_2 - \rho_1\Delta z_1)
|
||||
\end{align*}
|
||||
|
||||
If $\rho_a << \rho_2$:
|
||||
|
||||
$$\rho_{1,gauge} \approx \rho_2g\Delta z_2$$
|
||||
|
||||
## Differential U-Tube Manometer
|
||||
|
||||
![](./images/vimscrot-2021-10-13T09:37:02,070474894+01:00.png)
|
||||
|
||||
- Used to find the difference between two unknown pressures
|
||||
- Can be used for any fluid that doesn't react with manometer fluid
|
||||
- Same principle used in analysis
|
||||
|
||||
\begin{align*}
|
||||
p_A &= p_{A'} \\
|
||||
p_{bottom} &= p_{top} + \rho gh \\
|
||||
\rho_1 &= density\,of\,fluid\,1 \\
|
||||
\rho_2 &= density\,of\,fluid\,2
|
||||
\end{align*}
|
||||
|
||||
Left hand side:
|
||||
|
||||
$$p_A = p_1 + \rho_wg(z_C-z_A)$$
|
||||
|
||||
Right hand side:
|
||||
|
||||
$$p_B = p_2 + \rho_wg(z_C-z_B)$$
|
||||
|
||||
Right hand manometer fluid:
|
||||
|
||||
$$p_{A'} = p_B + \rho_mg(z_B - z_a)$$
|
||||
|
||||
\begin{align*}
|
||||
p_{A'} &= p_2 + \rho_mg(z_C - z_B) + \rho_mg(z_B - zA)\\
|
||||
&= p_2 + \rho_mg(z_C - z_B) + \rho_mg\Delta z \\
|
||||
\\
|
||||
p_A &= p_{A'} \\
|
||||
p_1 + \rho_wg(z_C-z_A) &= p_2 + \rho_mg(z_C - z_B) + \rho_mg\Delta z \\
|
||||
p_1 - p_2 &= \rho_wg(z_C-z_B-z_C+z_A) + \rho_mg\Delta z \\
|
||||
&= \rho_wg(z_A-z_B) + \rho_mg\Delta z \\
|
||||
&= -\rho_wg\Delta z + \rho_mg\Delta z
|
||||
\end{align*}
|
||||
|
||||
## Angled Differential Manometer
|
||||
|
||||
![](./images/vimscrot-2021-10-13T09:56:15,656796805+01:00.png)
|
||||
|
||||
- If the pipe is sloped then
|
||||
|
||||
$$p_1-p_2 = (\rho_m-\rho_w)g\Delta z + \rho_wg(z_{C2} - z_{C1})$$
|
||||
|
||||
- $p_1 > p_2$ as $p_1$ is lower
|
||||
- If there is no flow along the tube, then
|
||||
|
||||
$$p_1 = p_2 + \rho_wg(z_{C2} - z_{C1})$$
|
||||
|
Loading…
Reference in New Issue
Block a user