fix formatting issue
This commit is contained in:
parent
d845161287
commit
9c8de3928e
@ -58,12 +58,14 @@ Let $k$, an arbitrary scalar and $\pmb a$, an arbitrary vector.
|
|||||||
- $k(\pmb a + \pmb b) = k\pmb a + k\pmb b$
|
- $k(\pmb a + \pmb b) = k\pmb a + k\pmb b$
|
||||||
- $(k_1 + k_2)\pmb a = k_1\pmb a + k_2\pmb a$
|
- $(k_1 + k_2)\pmb a = k_1\pmb a + k_2\pmb a$
|
||||||
- $(k_1k_2)\pmb a = k_1(k_2\pmb a)$
|
- $(k_1k_2)\pmb a = k_1(k_2\pmb a)$
|
||||||
-
|
|
||||||
### The Scalar Product (Inner Product, Dot Product)
|
### The Scalar Product (Inner Product, Dot Product)
|
||||||
|
|
||||||
The scalar product of two vectors $\pmb a$ and $\pmb b$ is a scalar defined by
|
The scalar product of two vectors $\pmb a$ and $\pmb b$ is a scalar defined by
|
||||||
|
|
||||||
$$\pmb a \cdot \pmb b = |\pmb a||\pmb b|\cos\theta$$
|
$$\pmb a \cdot \pmb b = |\pmb a||\pmb b|\cos\theta = a_1b_1 + a_2b_2 + a_3b_3$$
|
||||||
|
|
||||||
|
where $\pmb a = (a_1, a_2, a_3)$ and $\pmb b = (b_1, b_2, b_3)$
|
||||||
|
|
||||||
where $\theta$ is the angle between the two vectors (note that $\cos\theta = \cos(2\pi - \theta)$).
|
where $\theta$ is the angle between the two vectors (note that $\cos\theta = \cos(2\pi - \theta)$).
|
||||||
This definition does not depend on a coordinate system.
|
This definition does not depend on a coordinate system.
|
||||||
@ -78,9 +80,6 @@ This definition does not depend on a coordinate system.
|
|||||||
ii. One or both of the vectorse are zero vectors
|
ii. One or both of the vectorse are zero vectors
|
||||||
|
|
||||||
- $\pmb a \cdot \pmb a = |\pmb a|^2 = a^2$
|
- $\pmb a \cdot \pmb a = |\pmb a|^2 = a^2$
|
||||||
- If $\pmb a = (a_1, a_2, a_3)$ and $\pmb b = (b_1, b_2, b_3)$ then
|
|
||||||
|
|
||||||
$$\pmb a \cdot \pmb b = a_1b_1 + a_2b_2 + a_3b_3$$
|
|
||||||
|
|
||||||
The base vectors are said to be *orthonormal* when $\pmb i^2 = \pmb j^2 = \pmb k^2 = 1$ and
|
The base vectors are said to be *orthonormal* when $\pmb i^2 = \pmb j^2 = \pmb k^2 = 1$ and
|
||||||
$i\cdot j = i\cdot k = j\cdot k = 0$.
|
$i\cdot j = i\cdot k = j\cdot k = 0$.
|
||||||
|
Loading…
Reference in New Issue
Block a user