attempt to better organise thermodynamics page
This commit is contained in:
parent
c075bea216
commit
b05441973e
@ -116,211 +116,6 @@ c_p &= \frac{c_p}{\gamma} + R \\
|
|||||||
c_p &= \frac{\gamma}{\gamma -1} R
|
c_p &= \frac{\gamma}{\gamma -1} R
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
|
|
||||||
</details>
|
|
||||||
|
|
||||||
|
|
||||||
## Properties of State
|
|
||||||
|
|
||||||
*State* is defined as the condition of a system as described by its properties.
|
|
||||||
The state may be identified by certain observable macroscopic properties.
|
|
||||||
These properties are the *properties of state* and they always have the same values for a given
|
|
||||||
state.
|
|
||||||
|
|
||||||
A *property* can be defined as any quantity that depends on the *state* of the system and is
|
|
||||||
independant of the path by which the system arrived at the given state.
|
|
||||||
Properties determining the state of a thermodynamic system are referred to as *thermodynamic
|
|
||||||
properties* of the *state* of the system.
|
|
||||||
|
|
||||||
Common properties of state are:
|
|
||||||
|
|
||||||
- Temperature
|
|
||||||
- Pressure
|
|
||||||
- Mass
|
|
||||||
- Volume
|
|
||||||
|
|
||||||
And these can be determined by simple measurements.
|
|
||||||
Other properties can be calculated:
|
|
||||||
|
|
||||||
- Specific volume
|
|
||||||
- Density
|
|
||||||
- Internal energy
|
|
||||||
- Enthalpy
|
|
||||||
- Entropy
|
|
||||||
|
|
||||||
### Intensive vs Extensive Properties
|
|
||||||
|
|
||||||
In thermodynamics we distinguish between *intensive*, *extensive*, and *specific* properties:
|
|
||||||
|
|
||||||
- Intensive --- properties which do not depend on mass (e.g. temperature)
|
|
||||||
- Extensive --- properties which do depend on the mass of substance in a system (e.g. volume)
|
|
||||||
- Specific (extensive) --- extensive properties which are reduced to unit mass of substance
|
|
||||||
(essentially an extensive property divided by mass) (e.g. specific volume)
|
|
||||||
|
|
||||||
### Units
|
|
||||||
|
|
||||||
<div class="tableWrapper">
|
|
||||||
|
|
||||||
Property | Symbol | Units | Intensive | Extensive
|
|
||||||
--------------- | ------ | --------------- | --------- | ---------
|
|
||||||
Pressure | p | Pa | Yes |
|
|
||||||
Temperature | T | K | Yes |
|
|
||||||
Volume | V | m$^3$ | | Yes
|
|
||||||
Mass | m | kg | | Yes
|
|
||||||
Specific Volume | v | m$^3$ kg$^{-1}$ | Yes |
|
|
||||||
Density | $\rho$ | kg m$^{-3}$ | Yes |
|
|
||||||
Internal Energy | U | J | | Yes
|
|
||||||
Entropy | S | J K$^{-1}$ | | Yes
|
|
||||||
Enthalpy | H | J | | Yes
|
|
||||||
|
|
||||||
</div>
|
|
||||||
|
|
||||||
### Density
|
|
||||||
|
|
||||||
For an ideal gas:
|
|
||||||
|
|
||||||
$$\rho = \frac{p}{RT}$$
|
|
||||||
|
|
||||||
### Enthalpy and Specific Enthalpy
|
|
||||||
|
|
||||||
Enthalpy does not have a general physical interpretation.
|
|
||||||
It is used because the combination $u + pv$ appears naturally in the analysis of many
|
|
||||||
thermodynamic problems.
|
|
||||||
|
|
||||||
The heat transferred to a closed system undergoing a reversible constant pressure process is equal
|
|
||||||
to the change in enthalpy of the system.
|
|
||||||
|
|
||||||
Enthalpy is defined as:
|
|
||||||
|
|
||||||
$$H = U+pV$$
|
|
||||||
|
|
||||||
and Specific Enthalpy:
|
|
||||||
|
|
||||||
$$h = u + pv$$
|
|
||||||
|
|
||||||
### Entropy and Specific Entropy
|
|
||||||
|
|
||||||
Entropy is defined as the following, given that the process s reversible:
|
|
||||||
|
|
||||||
$$S_2 - S_1 = \int\! \frac{\mathrm{d}Q}{T}$$
|
|
||||||
|
|
||||||
#### Change of Entropy of a Perfect Gas
|
|
||||||
|
|
||||||
Consider the 1st corollary of the 1st law:
|
|
||||||
|
|
||||||
$$\mathrm dq + \mathrm dw = \mathrm du$$
|
|
||||||
|
|
||||||
and that the process is reversible:
|
|
||||||
|
|
||||||
\begin{align*}
|
|
||||||
\mathrm ds &= \frac{\mathrm dq} T \bigg|_{rev} \\
|
|
||||||
\mathrm dq = \mathrm ds \times T \\
|
|
||||||
\mathrm dw &= -p\mathrm dv \\
|
|
||||||
\end{align*}
|
|
||||||
|
|
||||||
The application of the 1st corollary leads to:
|
|
||||||
|
|
||||||
$$T\mathrm ds - p\mathrm dv = \mathrm du$$
|
|
||||||
|
|
||||||
Derive the change of entropy
|
|
||||||
|
|
||||||
\begin{align*}
|
|
||||||
\mathrm ds &= \frac{\mathrm du}{T} + \frac{p \mathrm dv}{T} \\
|
|
||||||
\\
|
|
||||||
\mathrm du &= c_v \mathrm{d}T \\
|
|
||||||
\frac p T &= \frac R v \\
|
|
||||||
\\
|
|
||||||
\mathrm ds &= \frac{c_v\mathrm{d}T}{T} \frac{R\mathrm dv}{v} \\
|
|
||||||
s_2 - s_1 &= c_v\ln\left(\frac{T_2}{T_1}\right) + R\ln\left(\frac{v_2}{v_1}\right)
|
|
||||||
\end{align*}
|
|
||||||
|
|
||||||
There are two other forms of the equation that can be derived:
|
|
||||||
|
|
||||||
$$s_2 - s_1 = c_v\ln\left(\frac{p_2}{p_1}\right) + c_p\ln\left(\frac{v_2}{v_1}\right)$$
|
|
||||||
$$s_2 - s_1 = c_p\ln\left(\frac{T_2}{T_1}\right) - R\ln\left(\frac{p_2}{p_1}\right)$$
|
|
||||||
|
|
||||||
### Heat Capacity and Specific Heat Capacity
|
|
||||||
|
|
||||||
Heat capacity is quantity of heat required to raise the temperature of a system by a unit
|
|
||||||
temperature:
|
|
||||||
|
|
||||||
$$C = \frac{\mathrm{d}Q}{\mathrm{d}T}$$
|
|
||||||
|
|
||||||
Specific heat capacity is the quantity of heat required to raise the temperature of a unit mass
|
|
||||||
substance by a unit temperature:
|
|
||||||
|
|
||||||
$$c = \frac{\mathrm{d}q}{\mathrm{d}T}$$
|
|
||||||
|
|
||||||
<details>
|
|
||||||
<summary>
|
|
||||||
|
|
||||||
#### Heat Capacity in Closed Systems and Internal Energy
|
|
||||||
|
|
||||||
The specific heat transfer to a closed system during a reversible constant **volume** process is
|
|
||||||
equal to the change in specific **internal energy** of the system:
|
|
||||||
|
|
||||||
$$c_v = \frac{\mathrm{d}q}{\mathrm{d}T} = \frac{\mathrm{d}u}{\mathrm{d}T}$$
|
|
||||||
|
|
||||||
</summary>
|
|
||||||
|
|
||||||
This is because if the change in volume, $\mathrm{d}v = 0$, then the work done, $\mathrm{d}w = 0$
|
|
||||||
also.
|
|
||||||
So applying the (1st Corollary of the) 1st Law to an isochoric process:
|
|
||||||
|
|
||||||
$$\mathrm{d}q + \mathrm{d}w = \mathrm{d}u \rightarrow \mathrm{d}q = \mathrm{d}u$$
|
|
||||||
|
|
||||||
since $\mathrm{d}w = 0$.
|
|
||||||
|
|
||||||
</details>
|
|
||||||
|
|
||||||
<details>
|
|
||||||
<summary>
|
|
||||||
|
|
||||||
#### Heat Capacity in Closed Systems and Enthalpy
|
|
||||||
|
|
||||||
The specific heat transfer to a closed system during a reversible constant **pressure** process is
|
|
||||||
equal to the change in specific **enthalpy** of the system:
|
|
||||||
|
|
||||||
$$c_p = \frac{\mathrm{d}q}{\mathrm{d}T} = \frac{\mathrm{d}h}{\mathrm{d}T}$$
|
|
||||||
|
|
||||||
</summary>
|
|
||||||
|
|
||||||
This is because given that pressure, $p$, is constant, work, $w$, can be expressed as:
|
|
||||||
|
|
||||||
$$w = -\int^2_1\! p \,\mathrm{d}v = -p(v_2 - v_1)$$
|
|
||||||
|
|
||||||
Applying the (1st corollary of the) 1st law to the closed system:
|
|
||||||
|
|
||||||
\begin{align*}
|
|
||||||
q + w &= u_2 - u_1 \rightarrow q = u_2 - u_1 + p(v_2 - v_1) \\
|
|
||||||
q &= u_2 + pv_2 - (u_1 + pv_1) \\
|
|
||||||
&= h_2 - h_1 = \mathrm{d}h \\
|
|
||||||
\therefore \mathrm{d}q &= \mathrm{d}h
|
|
||||||
\end{align*}
|
|
||||||
|
|
||||||
</details>
|
|
||||||
|
|
||||||
<details>
|
|
||||||
<summary>
|
|
||||||
|
|
||||||
#### Ratio of Specific Heats
|
|
||||||
|
|
||||||
$c_p > c_v$ is always true.
|
|
||||||
|
|
||||||
</summary>
|
|
||||||
|
|
||||||
Heating a volume of fluid, $V$, at a constant volume requires specific heat $q_v$ where
|
|
||||||
|
|
||||||
$$q_v = u_2 - u_1 \therefore c_v = \frac{q_v}{\Delta T}$$
|
|
||||||
|
|
||||||
Heating the same volume of fluid but under constant pressure requires a specific heat $q_p$ where
|
|
||||||
|
|
||||||
$$q_p =u_2 - u_1 + p(v_2-v_1) \therefore c_p = \frac{q_p}{\Delta T}$$
|
|
||||||
|
|
||||||
Since $p(v_2-v_1) > 0$, $\frac{q_p}{q_v} > 1 \therefore q_p > q_v \therefore c_p > c_v$.
|
|
||||||
|
|
||||||
The ratio $\frac{c_p}{c_v} = \gamma$
|
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
## Thermodynamic Processes and Cycles
|
## Thermodynamic Processes and Cycles
|
||||||
@ -355,7 +150,7 @@ Constant volume process
|
|||||||
|
|
||||||
## Heat and Work
|
## Heat and Work
|
||||||
|
|
||||||
Heat and Work are different forms of enery transfer.
|
Heat and Work are different forms of energy transfer.
|
||||||
|
|
||||||
They are both transient phenomena and systems never possess heat or work.
|
They are both transient phenomena and systems never possess heat or work.
|
||||||
Both represent energy crossing boundaries when a system undergoes a change of state.
|
Both represent energy crossing boundaries when a system undergoes a change of state.
|
||||||
@ -385,10 +180,6 @@ In thermally insulated systems and isolated systems, heat transfer cannot take p
|
|||||||
|
|
||||||
In thermally isolated systems, work transfer cannot take place.
|
In thermally isolated systems, work transfer cannot take place.
|
||||||
|
|
||||||
# Process and State Diagrams
|
|
||||||
|
|
||||||
Reversible processes are represented by solid lines, and irreversible processes by dashed lines.
|
|
||||||
|
|
||||||
# 1st Law of Thermodynamics
|
# 1st Law of Thermodynamics
|
||||||
|
|
||||||
The 1st Law of Thermodynamics can be thought of as:
|
The 1st Law of Thermodynamics can be thought of as:
|
||||||
@ -411,7 +202,216 @@ The 1st Law of Thermodynamics can be thought of as:
|
|||||||
> The internal energy of a closed system remains unchanged if it
|
> The internal energy of a closed system remains unchanged if it
|
||||||
> [thermally isolated](#thermally-insulated-and-isolated-systems) from its surroundings
|
> [thermally isolated](#thermally-insulated-and-isolated-systems) from its surroundings
|
||||||
|
|
||||||
# Polytropic Processes
|
# Properties of State
|
||||||
|
|
||||||
|
*State* is defined as the condition of a system as described by its properties.
|
||||||
|
The state may be identified by certain observable macroscopic properties.
|
||||||
|
These properties are the *properties of state* and they always have the same values for a given
|
||||||
|
state.
|
||||||
|
|
||||||
|
A *property* can be defined as any quantity that depends on the *state* of the system and is
|
||||||
|
independant of the path by which the system arrived at the given state.
|
||||||
|
Properties determining the state of a thermodynamic system are referred to as *thermodynamic
|
||||||
|
properties* of the *state* of the system.
|
||||||
|
|
||||||
|
Common properties of state are:
|
||||||
|
|
||||||
|
- Temperature
|
||||||
|
- Pressure
|
||||||
|
- Mass
|
||||||
|
- Volume
|
||||||
|
|
||||||
|
And these can be determined by simple measurements.
|
||||||
|
Other properties can be calculated:
|
||||||
|
|
||||||
|
- Specific volume
|
||||||
|
- Density
|
||||||
|
- Internal energy
|
||||||
|
- Enthalpy
|
||||||
|
- Entropy
|
||||||
|
|
||||||
|
## Intensive vs Extensive Properties
|
||||||
|
|
||||||
|
In thermodynamics we distinguish between *intensive*, *extensive*, and *specific* properties:
|
||||||
|
|
||||||
|
- Intensive --- properties which do not depend on mass (e.g. temperature)
|
||||||
|
- Extensive --- properties which do depend on the mass of substance in a system (e.g. volume)
|
||||||
|
- Specific (extensive) --- extensive properties which are reduced to unit mass of substance
|
||||||
|
(essentially an extensive property divided by mass) (e.g. specific volume)
|
||||||
|
|
||||||
|
## Units
|
||||||
|
|
||||||
|
<div class="tableWrapper">
|
||||||
|
|
||||||
|
Property | Symbol | Units | Intensive | Extensive
|
||||||
|
--------------- | ------ | --------------- | --------- | ---------
|
||||||
|
Pressure | p | Pa | Yes |
|
||||||
|
Temperature | T | K | Yes |
|
||||||
|
Volume | V | m$^3$ | | Yes
|
||||||
|
Mass | m | kg | | Yes
|
||||||
|
Specific Volume | v | m$^3$ kg$^{-1}$ | Yes |
|
||||||
|
Density | $\rho$ | kg m$^{-3}$ | Yes |
|
||||||
|
Internal Energy | U | J | | Yes
|
||||||
|
Entropy | S | J K$^{-1}$ | | Yes
|
||||||
|
Enthalpy | H | J | | Yes
|
||||||
|
|
||||||
|
</div>
|
||||||
|
|
||||||
|
## Density
|
||||||
|
|
||||||
|
For an ideal gas:
|
||||||
|
|
||||||
|
$$\rho = \frac{p}{RT}$$
|
||||||
|
|
||||||
|
## Enthalpy and Specific Enthalpy
|
||||||
|
|
||||||
|
Enthalpy does not have a general physical interpretation.
|
||||||
|
It is used because the combination $u + pv$ appears naturally in the analysis of many
|
||||||
|
thermodynamic problems.
|
||||||
|
|
||||||
|
The heat transferred to a closed system undergoing a reversible constant pressure process is equal
|
||||||
|
to the change in enthalpy of the system.
|
||||||
|
|
||||||
|
Enthalpy is defined as:
|
||||||
|
|
||||||
|
$$H = U+pV$$
|
||||||
|
|
||||||
|
and Specific Enthalpy:
|
||||||
|
|
||||||
|
$$h = u + pv$$
|
||||||
|
|
||||||
|
## Entropy and Specific Entropy
|
||||||
|
|
||||||
|
Entropy is defined as the following, given that the process s reversible:
|
||||||
|
|
||||||
|
$$S_2 - S_1 = \int\! \frac{\mathrm{d}Q}{T}$$
|
||||||
|
|
||||||
|
### Change of Entropy of a Perfect Gas
|
||||||
|
|
||||||
|
Consider the 1st corollary of the 1st law:
|
||||||
|
|
||||||
|
$$\mathrm dq + \mathrm dw = \mathrm du$$
|
||||||
|
|
||||||
|
and that the process is reversible:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\mathrm ds &= \frac{\mathrm dq} T \bigg|_{rev} \\
|
||||||
|
\mathrm dq = \mathrm ds \times T \\
|
||||||
|
\mathrm dw &= -p\mathrm dv \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
The application of the 1st corollary leads to:
|
||||||
|
|
||||||
|
$$T\mathrm ds - p\mathrm dv = \mathrm du$$
|
||||||
|
|
||||||
|
Derive the change of entropy
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\mathrm ds &= \frac{\mathrm du}{T} + \frac{p \mathrm dv}{T} \\
|
||||||
|
\\
|
||||||
|
\mathrm du &= c_v \mathrm{d}T \\
|
||||||
|
\frac p T &= \frac R v \\
|
||||||
|
\\
|
||||||
|
\mathrm ds &= \frac{c_v\mathrm{d}T}{T} \frac{R\mathrm dv}{v} \\
|
||||||
|
s_2 - s_1 &= c_v\ln\left(\frac{T_2}{T_1}\right) + R\ln\left(\frac{v_2}{v_1}\right)
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
There are two other forms of the equation that can be derived:
|
||||||
|
|
||||||
|
$$s_2 - s_1 = c_v\ln\left(\frac{p_2}{p_1}\right) + c_p\ln\left(\frac{v_2}{v_1}\right)$$
|
||||||
|
$$s_2 - s_1 = c_p\ln\left(\frac{T_2}{T_1}\right) - R\ln\left(\frac{p_2}{p_1}\right)$$
|
||||||
|
|
||||||
|
## Heat Capacity and Specific Heat Capacity
|
||||||
|
|
||||||
|
Heat capacity is quantity of heat required to raise the temperature of a system by a unit
|
||||||
|
temperature:
|
||||||
|
|
||||||
|
$$C = \frac{\mathrm{d}Q}{\mathrm{d}T}$$
|
||||||
|
|
||||||
|
Specific heat capacity is the quantity of heat required to raise the temperature of a unit mass
|
||||||
|
substance by a unit temperature:
|
||||||
|
|
||||||
|
$$c = \frac{\mathrm{d}q}{\mathrm{d}T}$$
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
### Heat Capacity in Closed Systems and Internal Energy
|
||||||
|
|
||||||
|
The specific heat transfer to a closed system during a reversible constant **volume** process is
|
||||||
|
equal to the change in specific **internal energy** of the system:
|
||||||
|
|
||||||
|
$$c_v = \frac{\mathrm{d}q}{\mathrm{d}T} = \frac{\mathrm{d}u}{\mathrm{d}T}$$
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
This is because if the change in volume, $\mathrm{d}v = 0$, then the work done, $\mathrm{d}w = 0$
|
||||||
|
also.
|
||||||
|
So applying the (1st Corollary of the) 1st Law to an isochoric process:
|
||||||
|
|
||||||
|
$$\mathrm{d}q + \mathrm{d}w = \mathrm{d}u \rightarrow \mathrm{d}q = \mathrm{d}u$$
|
||||||
|
|
||||||
|
since $\mathrm{d}w = 0$.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
### Heat Capacity in Closed Systems and Enthalpy
|
||||||
|
|
||||||
|
The specific heat transfer to a closed system during a reversible constant **pressure** process is
|
||||||
|
equal to the change in specific **enthalpy** of the system:
|
||||||
|
|
||||||
|
$$c_p = \frac{\mathrm{d}q}{\mathrm{d}T} = \frac{\mathrm{d}h}{\mathrm{d}T}$$
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
This is because given that pressure, $p$, is constant, work, $w$, can be expressed as:
|
||||||
|
|
||||||
|
$$w = -\int^2_1\! p \,\mathrm{d}v = -p(v_2 - v_1)$$
|
||||||
|
|
||||||
|
Applying the (1st corollary of the) 1st law to the closed system:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
q + w &= u_2 - u_1 \rightarrow q = u_2 - u_1 + p(v_2 - v_1) \\
|
||||||
|
q &= u_2 + pv_2 - (u_1 + pv_1) \\
|
||||||
|
&= h_2 - h_1 = \mathrm{d}h \\
|
||||||
|
\therefore \mathrm{d}q &= \mathrm{d}h
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
### Ratio of Specific Heats
|
||||||
|
|
||||||
|
$c_p > c_v$ is always true.
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
Heating a volume of fluid, $V$, at a constant volume requires specific heat $q_v$ where
|
||||||
|
|
||||||
|
$$q_v = u_2 - u_1 \therefore c_v = \frac{q_v}{\Delta T}$$
|
||||||
|
|
||||||
|
Heating the same volume of fluid but under constant pressure requires a specific heat $q_p$ where
|
||||||
|
|
||||||
|
$$q_p =u_2 - u_1 + p(v_2-v_1) \therefore c_p = \frac{q_p}{\Delta T}$$
|
||||||
|
|
||||||
|
Since $p(v_2-v_1) > 0$, $\frac{q_p}{q_v} > 1 \therefore q_p > q_v \therefore c_p > c_v$.
|
||||||
|
|
||||||
|
The ratio $\frac{c_p}{c_v} = \gamma$
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
# Process and State Diagrams
|
||||||
|
|
||||||
|
Reversible processes are represented by solid lines, and irreversible processes by dashed lines.
|
||||||
|
|
||||||
|
# Isentropic and Polytropic Processes
|
||||||
|
|
||||||
|
## Polytropic Processes
|
||||||
|
|
||||||
A polytropic process is one which obeys the polytropic law:
|
A polytropic process is one which obeys the polytropic law:
|
||||||
|
|
||||||
@ -462,7 +462,7 @@ For any values of $x$ and $y$
|
|||||||
</details>
|
</details>
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
# Isentropic
|
## Isentropic Processes
|
||||||
|
|
||||||
*Isentropic* means constant entropy:
|
*Isentropic* means constant entropy:
|
||||||
|
|
||||||
@ -506,7 +506,7 @@ An isentropic process is an idealization of an actual process, and serves as the
|
|||||||
real life processes.
|
real life processes.
|
||||||
They are often desired and often the processes on which device efficiencies are calculated.
|
They are often desired and often the processes on which device efficiencies are calculated.
|
||||||
|
|
||||||
## Heat Transfer During Isentropic Processes
|
### Heat Transfer During Isentropic Processes
|
||||||
|
|
||||||
Assume that the compression 1-2 follows a polytropic process with a polytropic index $n$.
|
Assume that the compression 1-2 follows a polytropic process with a polytropic index $n$.
|
||||||
The work transfer is:
|
The work transfer is:
|
||||||
|
Loading…
Reference in New Issue
Block a user