Add examples for de moivre and euler

This commit is contained in:
Akbar Rahman 2021-10-14 13:06:56 +01:00
parent 9be52cc368
commit b19ef43cd8
Signed by: alvierahman90
GPG Key ID: 20609519444A1269

View File

@ -42,14 +42,14 @@ $$\bar{z} = z -iy$$
#### Example
\begin{align*}
> \begin{align*}
z_1 &= 5 + i \\
z_2 &= 1 -i \\
\\
\frac{z_1}{z_2} &= \frac{5+i}{1-i} \cdot \frac{\bar{z_2}}{\bar{z_2}} = \frac{(5+i)(1+i)}{(1-i)(1+i)} \\
&= \frac{5 + i + 5i -1}{1 + 1} \\
&= \frac{4 + 6i}{2} = 2 + 3i
\end{align*}
> \end{align*}
### Algebra and Conjugation
@ -146,15 +146,60 @@ $$e^{i\theta} = \cos\theta + i\sin\theta$$
**Note**: $$\bar z = r\cos\theta - ir\sin\theta = re^{-i\theta}$$
Example:
### Example 1
Write $z = -1 + i$ in exponential form
> Write $z = -1 + i$ in exponential form:
>
> $\arg z = \frac {3\pi} 4$
> $|z| = \sqrt 2$
>
> So $z = \sqrt2e^{i\frac{3\pi} 4}$
### Example 2
The equations for a mechanical vibration problem are found to have the following mathematical
solution:
$$z(t) = \frac{e^{i\omega t}}{\omega_0^2-\omega^2 + i\gamma}$$
where $t$ represents time and $\omega$, $\omega_0$ and $\gamma$ are all positive real physical
constants.
Although $z(t)$
is complex and cannot directly represent a physical solution, it turns out that the real and
imaginary parts $x(t)$ and $y(t)$ in $z(t) = x(t) + iy(t)$ can. Polar notation can be used to extract
this physical information efficiently as follows:
a. Put the denominator in the form
$$ae^{i\delta}$$
where you should give explicit expressions for $a$ and $\delta$ in terms of $\gamma$, $\gamma_0$,
and $\gamma$.
> \begin{align*}
a &= \sqrt{\gamma^2 + (\omega_0^2 - \omega^2)^2} \\
\delta &= \tan^{-1}\frac \delta {\omega_0^2 - \omega^2}
> \end{align*}
b. Hence find the constants $b$ and $\varphi$ such that
$$x(t) = b\cos(\omega t + \varphi)$$
and write a similar expression for $y(t)$.
> \begin{align*}
z &= \frac{e^i\omega t}{ae^{i\delta}} = \frac 1 a e^{i (\omega t - \delta)} \\
x + iy &= \frac 1 a \cos(\omega t - \delta) + \frac 1 a \sin(\omega t - \delta) \\
\therefore \Re z &= x = \frac 1 a \cos(\omega t - \delta), \\
\Im z &= y = \frac 1 a \sin(\omega t - \delta) \\
\\
b &= \frac 1 a = \frac 1 {\sqrt{\gamma^2 + (\omega_0^2 - \omega^2)^2}} \\
\varphi &= -\delta = \tan^{-1}\frac \delta {\omega_0^2 - \omega^2}\\
\\
y(t) &= \frac 1 a \sin(\omega t - \delta) \\
> \end{align*}
## Products of Complex Numbers
Suppose we have 2 complex numbers:
@ -193,7 +238,7 @@ z^n &= (re^{i\theta})^n \\
Write $1+i$ in polar form and use de Moivre's theorem to calculate $(1+i)^{15}$.
\begin{align*}
> \begin{align*}
r &= |1+i| = \sqrt2 \\
\theta &= \arg{1+i} = \frac \pi 4 \\
\\
@ -203,7 +248,7 @@ r &= |1+i| = \sqrt2 \\
&= 2^{\frac 15 2} \left(\frac 1 {\sqrt2} - \frac i {\sqrt2}\right) \\
&= 2^7 (1 - i) \\
&= 128 - 128i
\end{align*}
> \end{align*}
### Example 2
@ -215,13 +260,28 @@ Use de Moivre's theorem to show that
\sin{2\theta} &= 2\sin\theta\cos\theta
\end{align*}
Let $n=2$:
> Let $n=2$:
\begin{align*}
> \begin{align*}
(\cos\theta+i\sin\theta)^2 &= \cos^2\theta + 2i\sin\theta\cos\theta - \sin^2\theta \\
\text{Real part: } \cos^2\theta - \sin^2\theta &= \cos{2\theta}\\
\text{Imaginary part: } 2\sin\theta\cos\theta &= \sin{2\theta}
\end{align*}
> \end{align*}
### Example 3
Given that $n \in \mathbb{N}$ and $\omega = -1 + i$, show that
$w^n + \bar{w}^n = 2^{\frac n 2 + 1}\cos{\frac{3n\pi} 4}$ with Euler's formula.
> \begin{align*}
r &= \sqrt{2} \\
\arg \omega = \theta &= \frac 3 4 \pi \\
\\
\omega^n &= r^n(cos{n\theta} + i\sin{n\theta}) \\
\bar\omega^n &= r^n(cos{n\theta} - i\sin{n\theta}) \\
\omega^n + \bar\omega^n &= r^n(2\cos{n\theta}) \\
&= 2^{\frac n 2 + 1}\cos{\frac {3n\pi} 4}
> \end{align*}
## Complex Roots of Polynomials
@ -231,45 +291,45 @@ Which complex numbers $z$ satisfy
$$z^3 = 8i$$
1. Write $8i$ in exponential form,
$|8i| = 8$ and $\arg{8i} = \frac \pi 2$
$\therefore 8i = 8e^{i\frac \pi 2}$
2. Let the solution be $r = re^{i\theta}$.
Then $z^3 = r^3e^{3i\theta}$.
3. $z^3 = r^3e^{3i\theta} = 8e^{i\frac \pi 2}$
i. Compare modulus:
$r^3 = 8 \rightarrow r = 2$
ii. Compare argument:
$$3\theta = \frac \pi 2$$
is a solution but there are others since
$$e^{i\frac \pi 2} = e^{i \frac \pi 2 + 2n\pi}$$
so we get a solution whenever
$$3\theta = \frac \pi 2 + 2n\pi$$
for any integer `n`
- $n = 0 \rightarrow z = \sqrt3 + i$
- $n = 1 \rightarrow z = -\sqrt3 + i$
- $n = 2 \rightarrow z = -2i$
- $n = 3 \rightarrow z = \sqrt3 + i$
- $n = 4 \rightarrow z = -\sqrt3 + i$
- The solutions start repeating as you can see
In general, an $n$-th order polynomial has exactly $n$ complex roots.
Some of these complex roots may be real numbers.
4. There are three solution
> 1. Write $8i$ in exponential form,
>
> $|8i| = 8$ and $\arg{8i} = \frac \pi 2$
>
> $\therefore 8i = 8e^{i\frac \pi 2}$
>
>
> 2. Let the solution be $r = re^{i\theta}$.
>
> Then $z^3 = r^3e^{3i\theta}$.
>
> 3. $z^3 = r^3e^{3i\theta} = 8e^{i\frac \pi 2}$
>
> i. Compare modulus:
>
> $r^3 = 8 \rightarrow r = 2$
>
> ii. Compare argument:
>
> $$3\theta = \frac \pi 2$$
>
> is a solution but there are others since
>
> $$e^{i\frac \pi 2} = e^{i \frac \pi 2 + 2n\pi}$$
>
> so we get a solution whenever
>
> $$3\theta = \frac \pi 2 + 2n\pi$$
>
> for any integer `n`
>
> - $n = 0 \rightarrow z = \sqrt3 + i$
> - $n = 1 \rightarrow z = -\sqrt3 + i$
> - $n = 2 \rightarrow z = -2i$
> - $n = 3 \rightarrow z = \sqrt3 + i$
> - $n = 4 \rightarrow z = -\sqrt3 + i$
> - The solutions start repeating as you can see
>
> In general, an $n$-th order polynomial has exactly $n$ complex roots.
> Some of these complex roots may be real numbers.
>
> 4. There are three solutions