add notes on mmme 1026 differentiation
This commit is contained in:
parent
b05441973e
commit
cef225ae95
@ -172,3 +172,276 @@ To draw the curve of an implicit function you have to rewrite it in the form $y
|
|||||||
There may be more than one $y$ value for each $x$ value.
|
There may be more than one $y$ value for each $x$ value.
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
|
# Differentation
|
||||||
|
|
||||||
|
The derivative of the function $f(x)$ is denoted by:
|
||||||
|
|
||||||
|
$$f'(x) \text{ or } \frac{\mathrm{d}}{\mathrm dx} f(x)$$
|
||||||
|
|
||||||
|
Geometrically, the derivative is the gradient of the curve $y = f(x)$.
|
||||||
|
|
||||||
|
It is a measure of the rate of change of $f(x)$ as $x$ varies.
|
||||||
|
|
||||||
|
For example, velocity, $v$, is the rate of change of displacement, $s$, with respect to time, $t$,
|
||||||
|
or:
|
||||||
|
|
||||||
|
$$v = \frac{\mathrm ds}{dt}$$
|
||||||
|
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
#### Formal Definition
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-12-27T14:33:20,836330991+00:00.png)
|
||||||
|
|
||||||
|
As $h\rightarrow 0$, the clospe of the cord $\rightarrow$ slope of the tangent, or:
|
||||||
|
|
||||||
|
$$f'(x_0) = \lim_{h\rightarrow0}\frac{f(x_0+h) - f(x_0)}{h}$$
|
||||||
|
|
||||||
|
whenever this limit exists.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## Rules for Differentiation
|
||||||
|
|
||||||
|
### Powers
|
||||||
|
|
||||||
|
$$\frac{\mathrm d}{\mathrm dx} x^n = nx^{-1}$$
|
||||||
|
|
||||||
|
### Trigonometric Functions
|
||||||
|
|
||||||
|
$$\frac{\mathrm d}{\mathrm dx} \sin x = \cos x$$
|
||||||
|
$$\frac{\mathrm d}{\mathrm dx} \cos x = \sin x$$
|
||||||
|
|
||||||
|
### Exponential Functions
|
||||||
|
|
||||||
|
$$\frac{\mathrm d}{\mathrm dx} e^{kx} = ke^{kx}$$
|
||||||
|
|
||||||
|
$$\frac{\mathrm d}{\mathrm dx} \ln kx^n = \frac n x$$
|
||||||
|
|
||||||
|
where $n$ and $k$ are constant.
|
||||||
|
|
||||||
|
### Linearity
|
||||||
|
|
||||||
|
$$\frac{\mathrm d}{\mathrm dx} (f + g) = \frac{\mathrm d}{\mathrm dx} f + \frac{\mathrm d}{\mathrm dx} g$$
|
||||||
|
|
||||||
|
### Product Rule
|
||||||
|
|
||||||
|
$$\frac{\mathrm d}{\mathrm dx} (fg) = \frac{\mathrm df}{\mathrm dx}g + \frac{\mathrm dg}{\mathrm dx}f$$
|
||||||
|
|
||||||
|
### Quotient Rule
|
||||||
|
|
||||||
|
$$ \frac{\mathrm d}{\mathrm dx} \frac f g = \frac 1 {g^2} \left( \frac{\mathrm df}{\mathrm dx} g - f \frac{\mathrm dg}{\mathrm dx} \right) $$
|
||||||
|
|
||||||
|
$$ \left( \frac f g \right)' = \frac 1 {g^2} (gf' - fg')$$
|
||||||
|
|
||||||
|
### Chain Rule
|
||||||
|
|
||||||
|
Let
|
||||||
|
|
||||||
|
$$f(x) = F(u(x))$$
|
||||||
|
|
||||||
|
$$ \frac{\mathrm df}{\mathrm dx} = \frac{\mathrm{d}F}{\mathrm du} \frac{\mathrm du}{\mathrm dx} $$
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
#### Example 1
|
||||||
|
|
||||||
|
Differentiate $f(x) = \cos{x^2}$.
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
Let $u(x) = x^2$, $F(u) = \cos u$
|
||||||
|
|
||||||
|
$$ \frac{\mathrm df}{\mathrm dx} = -\sin u \cdot 2x = 2x\sin{x^2} $$
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## L'Hôpital's Rule
|
||||||
|
|
||||||
|
l'Hôpital's rule provides a systematic way of dealing with limits of functions like
|
||||||
|
$\frac{\sin x} x$.
|
||||||
|
|
||||||
|
Suppose
|
||||||
|
|
||||||
|
$$\lim_{x\rightarrow{a}} f(x) = 0$$
|
||||||
|
|
||||||
|
and
|
||||||
|
|
||||||
|
$$\lim_{x\rightarrow{a}} g(x) = 0$$
|
||||||
|
|
||||||
|
and we want $\lim_{x\rightarrow{a}} \frac{f(x)}{g(x)}$.
|
||||||
|
|
||||||
|
If
|
||||||
|
|
||||||
|
$$\lim_{x\rightarrow{a}} \frac{f'(x)}{g'(x)} = L $$
|
||||||
|
|
||||||
|
where any $L$ is any real number or $\pm \infty$, then
|
||||||
|
|
||||||
|
$$\lim_{x\rightarrow{a}} \frac{f(x)}{g(x)} = L$$
|
||||||
|
|
||||||
|
You can keep applying the rule until you get a sensible answer.
|
||||||
|
|
||||||
|
# Graphs
|
||||||
|
|
||||||
|
## Stationary Points
|
||||||
|
|
||||||
|
An important application of calculus is to find where a function is a maximum or minimum.
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-12-27T15:30:26,494800477+00:00.png)
|
||||||
|
|
||||||
|
when these occur the gradient of the tangent to the curve, $f'(x) = 0$.
|
||||||
|
The condition $f'(x) = 0$ alone however does not guarantee a minimum or maximum.
|
||||||
|
It only means that point is a *stationary point*.
|
||||||
|
|
||||||
|
There are three main types of stationary points:
|
||||||
|
|
||||||
|
- maximum
|
||||||
|
- minimum
|
||||||
|
- point of inflection
|
||||||
|
|
||||||
|
### Local Maximum
|
||||||
|
|
||||||
|
The point $x = a$ is a local maximum if:
|
||||||
|
|
||||||
|
$$f'(a) = 0 \text{ and } f''(a) < 0$$
|
||||||
|
|
||||||
|
This is because $f'(x)$ is a decreasing function of $x$ near $x=a$.
|
||||||
|
|
||||||
|
### Local Minimum
|
||||||
|
|
||||||
|
The point $x = a$ is a local minimum if:
|
||||||
|
|
||||||
|
$$f'(a) = 0 \text{ and } f''(a) > 0$$
|
||||||
|
|
||||||
|
This is because $f'(x)$ is a increasing function of $x$ near $x=a$.
|
||||||
|
|
||||||
|
### Point of Inflection
|
||||||
|
|
||||||
|
$$f'(a) = 0 \text{ and } f''(a) = 0 \text { and } f'''(a) \ne 0$$
|
||||||
|
|
||||||
|
#### $f'''(a) > 0$
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-12-27T15:38:11,125781274+00:00.png)
|
||||||
|
|
||||||
|
#### $f'''(a) < 0$
|
||||||
|
|
||||||
|
![](./images/vimscrot-2021-12-27T15:38:29,395666506+00:00.png)
|
||||||
|
|
||||||
|
# Taylor series
|
||||||
|
|
||||||
|
The expansion
|
||||||
|
|
||||||
|
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
|
||||||
|
|
||||||
|
is an example of a *Taylor series*.
|
||||||
|
These enable us to approximate a given function f(x) using a series which is often easier to
|
||||||
|
calculate.
|
||||||
|
Among other uses, they help us:
|
||||||
|
|
||||||
|
- calculate complicated function using simple arithmetic operations
|
||||||
|
- find useful analytical approximations which work for $x$ near a given value
|
||||||
|
(e.g. $e^x \approx 1 + x$ for $x$ near 0)
|
||||||
|
- Understand the behaviour of a function near a stationary point
|
||||||
|
|
||||||
|
## Strategy
|
||||||
|
|
||||||
|
Suppose we know information about $f(x)$ only at the point $x=0$.
|
||||||
|
How can we find out about $f$ for other values of $x$?
|
||||||
|
|
||||||
|
We could approximate the function by successive polynomials,
|
||||||
|
each time matching more derivatives at $x=0$.
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
g(x) = a_0 &\text{ using } f(0) \\
|
||||||
|
g(x) = a_0 + a_1x &\text{ using } f(0), f'(0) \\
|
||||||
|
g(x) = a_0 + a_1x + a_2x^2 &\text{ using } f(0), f'(0), f''(0) \\
|
||||||
|
&\text{and so on...}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
#### Example 1
|
||||||
|
|
||||||
|
For $x$ near 0, approximate $f(x) = \cos x$ by a quadratic.
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
1. Set $f(0) = g(0$:
|
||||||
|
|
||||||
|
$$f(0) = 1 \rightarrow g(0) = a_0 = 1$$
|
||||||
|
|
||||||
|
2. Set $f'(0) = g'(0$:
|
||||||
|
|
||||||
|
$$f'(0) = -\sin0 = 0 \rightarrow g'(0) = a_1 = 0$$
|
||||||
|
|
||||||
|
3. Set $f''(0) = g''(0$:
|
||||||
|
|
||||||
|
$$f''(0) = -\cos = -1 \rightarrow g''(0) = 2a_2 = -1 \rightarrow a_2 = -0.5$$
|
||||||
|
|
||||||
|
So for $x$ near 0,
|
||||||
|
|
||||||
|
$$\cos x \approx 1 - \frac 1 2 x^2$$
|
||||||
|
|
||||||
|
Check:
|
||||||
|
|
||||||
|
$x$ | $\cos x$ | $1 - 0.5x^2$
|
||||||
|
--- | -------- | ------------
|
||||||
|
0.4 | 0.921061 | 0.920
|
||||||
|
0.2 | 0.960066 | 0.980
|
||||||
|
0.1 | 0.995004 | 0.995
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## General Case
|
||||||
|
|
||||||
|
### Maclaurin Series
|
||||||
|
|
||||||
|
A Maclaurin series is a Taylor series expansion of a function about 0.
|
||||||
|
|
||||||
|
Any function $f(x)$ can be written as an infinite *Maclaurin Series*
|
||||||
|
|
||||||
|
$$f(x) = a_0 + a_1x + a_2x^2 + a_3x^2 + \cdots$$
|
||||||
|
|
||||||
|
where
|
||||||
|
|
||||||
|
$$a_0 = f(0) \qquad a_n = \frac 1 {n!} \frac{\mathrm d^nf}{\mathrm dx^n} \bigg|_{x=0}$$
|
||||||
|
|
||||||
|
($|_{x=0}$ means evaluated at $x=0$)
|
||||||
|
|
||||||
|
### Taylor Series
|
||||||
|
|
||||||
|
We may alternatively expand about any point $x=a$ to give a Taylor series:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
f(x) = &f(a) + (x-a)f'(a) \\
|
||||||
|
& + \frac 1 {2!}(x-a)^2f''(a) \\
|
||||||
|
& + \frac 1 {3!}(x-a)^3f'''(a) \\
|
||||||
|
& + \cdots + \frac 1 {n!}(x-a)^nf^{(n)}(a)
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
a generalisation of a Maclaurin series.
|
||||||
|
|
||||||
|
An alternative form of Taylor series is given by setting $x = a+h$ where $h$ is small:
|
||||||
|
|
||||||
|
$$f(a+h) = f(a) + hf'(a) + \cdots + \frac 1 {n!}h^nf^{(n)}(a) + \cdots$$
|
||||||
|
|
||||||
|
|
||||||
|
## Taylor Series at a Stationary Point
|
||||||
|
|
||||||
|
If f(x) has a stationary point at $x=a$, then $f'(a) = 0$ and the Taylor series begins
|
||||||
|
|
||||||
|
$$f(x) = f(a) + \frac 1 2 f''(a)(x-a)^2 + \cdots$$
|
||||||
|
|
||||||
|
- If $f''(a) > 0$ then the quadratic part makes the function increase going away from $x=a$ and we
|
||||||
|
have a minimum
|
||||||
|
- If $f''(a) < 0$ then the quadratic part makes the function decrease going away from $x=a$ and we
|
||||||
|
have a maximum
|
||||||
|
- If $f''(a) = 0$ then we must include a higer order terms to determine what happens
|
||||||
|
have a minimum
|
||||||
|
Binary file not shown.
After Width: | Height: | Size: 53 KiB |
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
Loading…
Reference in New Issue
Block a user