add notes on pumps, turbines
After Width: | Height: | Size: 159 KiB |
After Width: | Height: | Size: 122 KiB |
BIN
uni/mmme/2047_thermodynamics_and_fluid_dynamics/images/hawt.png
Normal file
After Width: | Height: | Size: 208 KiB |
After Width: | Height: | Size: 121 KiB |
After Width: | Height: | Size: 120 KiB |
After Width: | Height: | Size: 294 KiB |
BIN
uni/mmme/2047_thermodynamics_and_fluid_dynamics/images/vawt.png
Normal file
After Width: | Height: | Size: 64 KiB |
@ -1,8 +1,8 @@
|
|||||||
---
|
---
|
||||||
author: Akbar Rahman
|
author: Akbar Rahman
|
||||||
date: \today
|
date: \today
|
||||||
title: MMME2047 // Turbomachinery
|
title: MMME2047 // Turbomachinery // Pumps
|
||||||
tags: [ turbomachinery ]
|
tags: [ turbomachinery, pumps ]
|
||||||
uuid: 11f0f745-2364-4594-8e47-127a4af39417
|
uuid: 11f0f745-2364-4594-8e47-127a4af39417
|
||||||
lecture_slides: [ ./lecture_slides/T5 - Turbomachinery - with solutions.pdf ]
|
lecture_slides: [ ./lecture_slides/T5 - Turbomachinery - with solutions.pdf ]
|
||||||
lecture_notes: [ ./lecture_notes/turbomachinery lecture notes(H Power).pdf ]
|
lecture_notes: [ ./lecture_notes/turbomachinery lecture notes(H Power).pdf ]
|
||||||
@ -122,3 +122,80 @@ It is important that the inlet pressure is as high as possible.
|
|||||||
To do this, one can reduce frictional losses (e.g. shorter smoother pipes) or install the pump lower down
|
To do this, one can reduce frictional losses (e.g. shorter smoother pipes) or install the pump lower down
|
||||||
(even below the reservoir) (slides p. 36).
|
(even below the reservoir) (slides p. 36).
|
||||||
|
|
||||||
|
# Dimensionless Pump Performance
|
||||||
|
|
||||||
|
Output variables for a pump's performance are pump head $H$ and brake horsepower $P$.
|
||||||
|
Input variables are discharge $Q$, impeller diameter $D$, and shaft speed $n$.
|
||||||
|
|
||||||
|
The dimensional relationships that we need are
|
||||||
|
|
||||||
|
$$gH = f_1(Q, D, n, \rho, \mu, \epsilon)$$
|
||||||
|
|
||||||
|
$$P = f_2(Q, D, n, \rho, \mu, \epsilon)$$
|
||||||
|
|
||||||
|
Pi-theorem allows the following coefficients to be derived:
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
\Pi_1 &= C_H = \frac{gH}{n^2D^2} &\text{Head coefficient}
|
||||||
|
\Pi_2 &= C_P = \frac{P}{\rho n^3D^5}&\text{Power coefficient}
|
||||||
|
\Pi_3 &= C_Q = \frac{Q}{nD^3}&\text{Capacity coefficient}
|
||||||
|
\Pi_4 &= \text{Re} = \frac{\rho nD^2}{\mu}&\text{Reynolds Number}
|
||||||
|
\Pi_5 &= = \frac{\epsilon}{D}&\text{Roughness Parameter}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
Therefore it can be expressed that:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
C_H &= g_1(C_Q, \text{Re}, \frac{\epsilon}{D}
|
||||||
|
C_P &= g_2(C_Q, \text{Re}, \frac{\epsilon}{D}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
However for pumps it is assumed that Reynolds number and roughness parameter are constant
|
||||||
|
for a set of similar pumps:
|
||||||
|
|
||||||
|
![Pump Performance Coefficients vs $C_Q$](./images/dimensionless_pump_performance.png)
|
||||||
|
|
||||||
|
Similar pumps are those which have the same design, other than the dimensions.
|
||||||
|
Therefore it can be written that:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
C_H &\approx g_3(C_Q)
|
||||||
|
C_P &\approx g_4(C_Q)
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Pump efficiency is already dimensionless but can be related to the other dimensionless
|
||||||
|
groups:
|
||||||
|
|
||||||
|
$$\eta = \frac{C_HC_Q}{C_P} \approx \eta(C_Q)$$
|
||||||
|
|
||||||
|
A nondimensional NPSH can also be defined:
|
||||||
|
|
||||||
|
$$C_{HS} = \frac{g\cdot\text{NPSH}}{n^2D^2} \approx C_{HS}(C_Q)$$
|
||||||
|
|
||||||
|
However, larger impellers for similar pump designs can lead to higher efficiencies, higher Reynolds
|
||||||
|
number, lower friction head, and lower leakage low.
|
||||||
|
|
||||||
|
# Mixed and Axial Flow Pumps
|
||||||
|
|
||||||
|
Centrifugal pumps are high-head, low discharge machines, and therefore not suitable when high flow
|
||||||
|
rates are required.
|
||||||
|
|
||||||
|
For high flow rates, mixed-flow and axial-flow pumps are preferred.
|
||||||
|
The flow passes through the impeller with an axial flow component and less centrifugal component.
|
||||||
|
|
||||||
|
![Types of Pumps, showing how axial pumps differ from centrifugal pumps. ](./images/pump_types.png)
|
||||||
|
|
||||||
|
## Specific Speed
|
||||||
|
|
||||||
|
Specific speed is a nondimensional shaft speed which is obtained by eliminating the diameter
|
||||||
|
between $C_Q$ and $C_H$:
|
||||||
|
|
||||||
|
$$N'_S = \frac{C_Q^{\frac12}}{C_H^{\frac34}}$$
|
||||||
|
|
||||||
|
There is also 'lazy' dimensional version which may be used by manufacturers:
|
||||||
|
|
||||||
|
$$N'_S = \frac{N_S}{2734}$$
|
||||||
|
|
||||||
|
where $N_S$ is the 'lazy' dimensional version, $N'_S$ is the dimensionless version.
|
||||||
|
|
||||||
|
![Chart of Specific Speeds and Efficiency of Pump Types](./images/specific_speed.png)
|
79
uni/mmme/2047_thermodynamics_and_fluid_dynamics/turbines.md
Executable file
@ -0,0 +1,79 @@
|
|||||||
|
---
|
||||||
|
author: Akbar Rahman
|
||||||
|
date: \today
|
||||||
|
title: MMME2047 // Turbomachinery // Turbines
|
||||||
|
tags: [ turbomachinery, turbines ]
|
||||||
|
uuid: 1690fa4a-086a-4c2e-b52e-8a6fe7ddb62c
|
||||||
|
lecture_slides: [ ./lecture_slides/T5 - Turbomachinery - with solutions.pdf ]
|
||||||
|
lecture_notes: [ ./lecture_notes/turbomachinery lecture notes(H Power).pdf ]
|
||||||
|
exercise_sheets: [ ./exercise_sheets/Turbomachinery-problems.pdf]
|
||||||
|
---
|
||||||
|
|
||||||
|
Turbines extract energy from a fluid, taking it from a higher head to a lower head state.
|
||||||
|
|
||||||
|
There are two types of turbines:
|
||||||
|
|
||||||
|
- reaction turbine --- essentially the inverse of a centrifugal pump (lecture slides p. 55-56)
|
||||||
|
- impulse turbine --- high pressure of the flow is converted into a high speed jet (lecture slides p. 57)
|
||||||
|
|
||||||
|
# Dimensionless Turbine Performance
|
||||||
|
|
||||||
|
The dimensionless groups are the same as in pumps:
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
C_H &= \frac{gH}{n^2D^2} &\text{Head coefficient}
|
||||||
|
C_P &= \frac{P}{\rho n^3D^5}&\text{Power coefficient}
|
||||||
|
C_Q &= \frac{Q}{nD^3}&\text{Capacity coefficient}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
However, in a turbine the efficiency is written as:
|
||||||
|
|
||||||
|
$$\eta = \frac{P}{P_w} = \frac{P}{\rho QgH}$$
|
||||||
|
|
||||||
|
Additionally, similarly to how pumps performances can be approximated as a function of only $C_Q$,
|
||||||
|
the performance of a pump can be approximated to a function of $C_P$:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
C_H &\approx g_3(C_P)
|
||||||
|
C_Q &\approx g_4(C_P)
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
![Performance curve for a Francis radial turbine](./images/francis_turbine_performance_curve.png)
|
||||||
|
|
||||||
|
The maximum efficiency point for turbines is called normal power.
|
||||||
|
|
||||||
|
## Power Specific Speed
|
||||||
|
|
||||||
|
Equivalent to specific speeds for pumps.
|
||||||
|
|
||||||
|
$$N'_{SP} = \frac{C_P^{\frac12}}{C_H^{\frac54}}$$
|
||||||
|
|
||||||
|
![Pump efficiency curves for different types of pumps.](./images/pump_efficiency_curves.png)
|
||||||
|
|
||||||
|
# Wind Turbines
|
||||||
|
|
||||||
|
There are two types of turbines:
|
||||||
|
|
||||||
|
- horizontal axis wind turbine (hawt)
|
||||||
|
- vertical axis wind turbine (vawt)
|
||||||
|
|
||||||
|
The lecture slides (p. 65-70) detail the wind turbine theory, but this will not be assessed.
|
||||||
|
|
||||||
|
## Horizontal Axis Wind Turbine (HAWT)
|
||||||
|
|
||||||
|
![Picture of a HAWT](./images/hawt.png)
|
||||||
|
|
||||||
|
They come with a couple advantages:
|
||||||
|
|
||||||
|
- more efficient than VAWT
|
||||||
|
- taller than VAWT therefore more efficient
|
||||||
|
|
||||||
|
## Vertical Axis Wind Turbine (VAWT)
|
||||||
|
|
||||||
|
![Picture of a VAWT](./images/vawt.png)
|
||||||
|
|
||||||
|
- smaller than HAWT, therefore cheaper
|
||||||
|
- gearbox and generator can be put at ground level
|
||||||
|
- easier to build and maintain
|
||||||
|
- quieter
|
||||||
|
- can be used in places where wind changes frequently
|