notes on asymmetrical beam bending
136
uni/mmme/2xxx/2053_mechanics_of_solids/asymmetrical_bending.md
Executable file
@ -0,0 +1,136 @@
|
||||
---
|
||||
author: Akbar Rahman
|
||||
date: \today
|
||||
title: MMME2053 // Asymmetrical Beam Bending
|
||||
tags: [ mmme2053, beam_bending, asymmetrical_beam_bending ]
|
||||
uuid: 7afb5f13-4d55-4e00-927a-5d622520d844
|
||||
---
|
||||
|
||||
# Product Moments of Area
|
||||
|
||||
To analyse asymmetrically loaded sections, we need the second moments of area $I_{yy}$, and $I_{xx}$
|
||||
but we also need $I_{xy}$, the product moment of area:
|
||||
|
||||
$$I_{xy} = \int_A xy \mathrm{d}A$$
|
||||
|
||||
# Parallel Axis Theorem
|
||||
|
||||
The parallel axis theorem allows calculation of 2nd moments of area and product moments of area with
|
||||
respect to $x'$ and $y'$ axes:
|
||||
|
||||
![](./images/vimscrot-2023-02-02T14:40:20,244467338+00:00.png)
|
||||
|
||||
|
||||
\begin{align*}
|
||||
I_{x'x'} &= \int_A y'^2 \mathrm{d}A \\
|
||||
&= \int_A (y+b)^2 \mathrm{d}A \\
|
||||
&= \int_A (y^2 + b^2 + 2by) \mathrm{d}A \\
|
||||
\\
|
||||
I_{x'x'} &= I_{xx} + Ab^2
|
||||
\end{align*}
|
||||
|
||||
Similarly you can get
|
||||
|
||||
\begin{align*}
|
||||
I_{y'y'} &= I_{yy} + Aa^2 \\
|
||||
I_{x'y'} &= I_{xy} + abA
|
||||
\end{align*}
|
||||
|
||||
# Principal Axes and Principal 2nd Moments of Area
|
||||
|
||||
Once the second moments of area and product moments are found, they can be used to plot a Mohr's circle where:
|
||||
|
||||
- Point A is plotted at $(I_{xx}, I_{xy})$
|
||||
- Point B is plotted at $(I_{yy}, -I_{xy})$
|
||||
- Points P and Q show the positions of the principal 2nd moments of area, $I_p$, and $I_q$.
|
||||
- $\theta$ is the angular position $e$ of the principal axes with respect to the $x$-$y$ axes
|
||||
|
||||
The principal axes are the axes where the product moment of area is 0.
|
||||
|
||||
![](./images/vimscrot-2023-02-02T14:44:15,574579179+00:00.png)
|
||||
|
||||
$$C = \frac{I_{xx} + I_{yy}}{2}$$
|
||||
|
||||
$$R = \sqrt{\left(\frac{I_{xx}-I{yy}}{2}\right)^2 + I_{xy}^2}$$
|
||||
|
||||
$$I_p = C + R$$
|
||||
|
||||
$$I_q = C - R$$
|
||||
|
||||
$$\sin{2\theta} = \frac{I_{xy}}{R}$$
|
||||
|
||||
# Analyse Bending of a Beam with Asymmetric Section by Resolving Bending Moments onto Princial Axes
|
||||
|
||||
![](./images/vimscrot-2023-02-02T14:53:05,040998048+00:00.png)
|
||||
|
||||
If a bending moment, $M_x$ is applied about the x-axis only, then the stress in the flanges will
|
||||
cause bending to takeplace about both x and y axes.
|
||||
This is a consequence of $I_{xy} \neq 0$.
|
||||
|
||||
To avoid this moment coupling effect, it is usually convenient to solve bending problems by
|
||||
considering bending about the principal axes, for which $I_{xy} = 0$.
|
||||
|
||||
## Resolving onto Principal Axes
|
||||
|
||||
![](./images/vimscrot-2023-02-02T14:54:13,309546586+00:00.png)
|
||||
|
||||
If bending moments $M_x$ and $M_y$ are applied about the x and y axes respectively, these can be
|
||||
resolved onto the principal axes, P and Q:
|
||||
|
||||
![](./images/vimscrot-2023-02-02T14:54:26,513070327+00:00.png)
|
||||
|
||||
\begin{align*}
|
||||
\cos\theta &= \frac{M_{P_x}}{M_x} \rightarrow M_{P_x} = M_x\cos\theta\\
|
||||
\sin\theta &= \frac{-M_{Q_x}}{M_x} \rightarrow M_{Q_x} = -M_x\sin\theta\\
|
||||
\end{align}
|
||||
|
||||
![](./images/vimscrot-2023-02-02T14:54:32,264829706+00:00.png)
|
||||
|
||||
Similarly we get:
|
||||
|
||||
\begin{align*}
|
||||
M_{P_y} = M_y\sin\theta\\
|
||||
M_{Q_y} = M_y\cos\theta\\
|
||||
\end{align}
|
||||
|
||||
Therefore:
|
||||
|
||||
\begin{align*}
|
||||
M_P = M_{P_x} + M_{P_y} = M_x\cos\theta + M_y\sin\theta \\
|
||||
M_Q = M_{Q_x} + M_{Q_y} = -M_x\sin\theta + M_y\cos\theta \\
|
||||
\end{align*}
|
||||
|
||||
## Bending Stress at Position (P, Q)
|
||||
|
||||
![](./images/vimscrot-2023-02-02T15:02:36,806587572+00:00.png)
|
||||
|
||||
$$\sigma = \frac{M_PQ}{I_P} - \frac{M_QP}{I_Q}$$
|
||||
|
||||
Note the -ve sign, as a positive stress results in a -ve moment about the y-axis.
|
||||
|
||||
## Position of the Neutral Axis
|
||||
|
||||
![](./images/vimscrot-2023-02-02T15:09:13,105535645+00:00.png)
|
||||
|
||||
The neutral axis is where $\sigma = 0$:
|
||||
|
||||
\begin{align*}
|
||||
\frac{M_PQ}{I_P} &= \frac{M_QP}{I_Q} \\
|
||||
\frac Q P &= \frac{M_QI_P}{M_PI_Q} \\
|
||||
\\
|
||||
\alpha &= \arctan\frac{Q}{P}
|
||||
\end{align*}
|
||||
|
||||
The maximum stress is located in cross section point which is furthest from the neutral axis.
|
||||
|
||||
## Procedure for Solving for Bending Stress and Neutral Axis Position in Asymmetrical Bending Problems
|
||||
|
||||
1. [Determine the principal axes](#Principal-Axes-and-Principal-2nd-Moments-of-Area) of the section (about which $I_{xy}= 0$)
|
||||
2. [Resolve bending moments onto these axes](#resolving-onto-principal-axes)
|
||||
3. [Determine angle of neutral axis](#position-of-neutral-axis)
|
||||
4. Evaluate bending stress at any poisition in the section, such as extremes away from neutral axis, which give maximum bending stress
|
||||
|
||||
# Worked Example
|
||||
|
||||
- [Worked Example 1 (PDF)](./worked_examples/MMME2053 AB WE1 Slides.pdf)
|
||||
- [Worked Example 2 (PDF)](./worked_examples/MMME2053 AB WE2 Slides.pdf)
|
After Width: | Height: | Size: 545 KiB |
After Width: | Height: | Size: 1.0 KiB |
After Width: | Height: | Size: 1.1 KiB |
After Width: | Height: | Size: 1.1 KiB |
After Width: | Height: | Size: 952 B |
After Width: | Height: | Size: 372 B |
After Width: | Height: | Size: 468 B |
After Width: | Height: | Size: 1.1 KiB |
After Width: | Height: | Size: 1.2 KiB |