diff --git a/mechanical/mmme1026_maths_for_engineering/complex_numbers.md b/mechanical/mmme1026_maths_for_engineering/complex_numbers.md new file mode 100755 index 0000000..0c63acc --- /dev/null +++ b/mechanical/mmme1026_maths_for_engineering/complex_numbers.md @@ -0,0 +1,390 @@ +--- +author: Alvie Rahman +date: \today +title: MMME1026 // Complex Numbers +tags: [ uni, nottingham, mechanical, engineering, mmme1026, maths, complex_numbers ] +--- + +# Complex Numbers + +## What is a Complex Number? + +- $i$ is the unit imaginary number, which is defined by: + + $$ i^2 = -1 $$ + +- An arbritary complex number is written in the form + + $$z = x + iy$$ + + Where: + + - $x$ is the real part of $z$ (which you may seen written as $\Re(z) = x$ or Re$(z) = x$) + - $y$ is the imaginary part of $z$ (which you may seen written as $\Im(z) = y$ or Im$(z) = y$) + +- Two complex numbers are equal if both their real and imaginary parts are equal + + e.g. $$(3 + 4i) + (1 -2i) = (3+1) + i(4-2) = 2 + 2i$$ + +### The Complex Conjugate + +Given complex number $z$: + +$$z = z + iy$$ + +The complex conjugate of z, $\bar z$ is: + +$$\bar{z} = z -iy$$ + +### Division of Complex Numbers + +- Multiply numerator and denominator by the conjugate of the denominator + +
+ + +#### Example + + + +> \begin{align*} + z_1 &= 5 + i \\ + z_2 &= 1 -i \\ + \\ + \frac{z_1}{z_2} &= \frac{5+i}{1-i} \cdot \frac{\bar{z_2}}{\bar{z_2}} = \frac{(5+i)(1+i)}{(1-i)(1+i)} \\ + &= \frac{5 + i + 5i -1}{1 + 1} \\ + &= \frac{4 + 6i}{2} = 2 + 3i +> \end{align*} + +
+ +### Algebra and Conjugation + +When taking complex conjugate of an algebraic expresion, we can replace $i$ by $-i$ before or after +doing the algebraic operations: + +\begin{align*} +\overline{z_1+z_2} &= \bar{z_1}+\bar{z_2} \\ +\overline{z_1z_2} &= \bar{z_1}\bar{z_2} \\ +\overline{z_1/z_2} &= \frac{\bar{z_1}}{\bar{z_2}} +\end{align*} + +The conjugate of a real number is the same as that number. + +#### Application + +If $z$ is a root of the polynomial equation + +$$0 = az^2 + bz + c$$ + +with **real** coefficients $a$, $b$, and $c$, then $\bar{z}$ is also a root because + +\begin{align*} +0 &= \overline{az^2 + bz + c} \\ + &= \bar{a}\bar{z}^2 + \bar{b}\bar{z} + \bar{c} \\ + &= a\bar{z}^2 + b\bar{z} + c +\end{align*} + +### The Argand Diagram + +A general complex number $z = x + iy$ has two components so it can can be represented as a point in +the plane with Cartesion coordinates $(x, y)$. + +\begin{align*} +4-2i &\leftrightarrow (4, -2) \\ +-i &\leftrightarrow (0, -1) \\ +z &\leftrightarrow (x, y) \\ +\bar z &\leftrightarrow (x, -y) +\end{align*} + +### Plotting on a Polar Graph + +We can also describe points in the complex plain with polar coordinates $(r, \theta)$: + +\begin{align*} +z &= r(\cos\theta + i\sin\theta) &\text{ polar form of $z$} \\ +r &= \sqrt{x^2+y^2} &\text{(modulus)}\\ +\theta &= \arg z,\text{ where} \tan \theta = \frac y x &\text{(argument)} \\ +x &= r\cos \theta \\ +y &= r\sin \theta +\end{align*} + +Be careful when turning $(x, y)$ into $(r, \theta)$ form as $\tan^{-1} \frac y x = \theta$ does not +always hold true as there are many solutions. + +#### Choosing $\theta$ Correctly + +1. Determine which quadrant the point is in (draw a picture). +2. Find a value of $\theta$ such that $\tan \theta = \frac y x$ and check that it is consistent. + If it puts you in the wrong quadrant, add or subtract $\pi$. + +## Exponential Functions + +- The exponential function $f(x) = \exp x$ may be wirtten as an infinite series: + + $$\exp x = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots $$ + +- The function $f(x) = e^{-x}$ is just $\frac 1 {e^x}$ +- Note the important properties: + +\begin{align*} +e^{a+b} &= e^a e^b \\ +(e^a)^b &= e^{ab} +\end{align*} + +## Euler's Formula + +$$e^{i\theta} = \cos\theta + i\sin\theta$$ + +- Properties of $e^{i\theta}$: For any real angle $\theta$ we have + + $$|e^{i\theta}| = |\cos\theta + i\sin\theta| = \sqrt{\cos^2\theta + \sin^2\theta} = 1$$ + + and + + $$ \arg {e^{i\theta}} = \theta $$ + +- A complex number in *polar form*, where $r = |z|$, and $\theta = \arg z$, may alternatively be + written in its *exponential form*: + + $$z = re^{i\theta}$$ + + **Note**: $$\bar z = r\cos\theta - ir\sin\theta = re^{-i\theta}$$ + +
+ + +### Example 1 + +Write $z = -1 + i$ in exponential form + + + +> $\arg z = \frac {3\pi} 4$ +> $|z| = \sqrt 2$ +> +> So $z = \sqrt2e^{i\frac{3\pi} 4}$ + +
+ +
+ + +### Example 2 + +The equations for a mechanical vibration problem are found to have the following mathematical +solution: + +$$z(t) = \frac{e^{i\omega t}}{\omega_0^2-\omega^2 + i\gamma}$$ + + + +where $t$ represents time and $\omega$, $\omega_0$ and $\gamma$ are all positive real physical +constants. +Although $z(t)$ +is complex and cannot directly represent a physical solution, it turns out that the real and +imaginary parts $x(t)$ and $y(t)$ in $z(t) = x(t) + iy(t)$ can. Polar notation can be used to extract +this physical information efficiently as follows: + +a. Put the denominator in the form + + $$ae^{i\delta}$$ + + where you should give explicit expressions for $a$ and $\delta$ in terms of $\gamma$, $\gamma_0$, + and $\gamma$. + + + > \begin{align*} + a &= \sqrt{\gamma^2 + (\omega_0^2 - \omega^2)^2} \\ + \delta &= \tan^{-1}\frac \delta {\omega_0^2 - \omega^2} + > \end{align*} + +b. Hence find the constants $b$ and $\varphi$ such that + + $$x(t) = b\cos(\omega t + \varphi)$$ + + and write a similar expression for $y(t)$. + + > \begin{align*} + z &= \frac{e^i\omega t}{ae^{i\delta}} = \frac 1 a e^{i (\omega t - \delta)} \\ + x + iy &= \frac 1 a \cos(\omega t - \delta) + \frac 1 a \sin(\omega t - \delta) \\ + \therefore \Re z &= x = \frac 1 a \cos(\omega t - \delta), \\ + \Im z &= y = \frac 1 a \sin(\omega t - \delta) \\ + \\ + b &= \frac 1 a = \frac 1 {\sqrt{\gamma^2 + (\omega_0^2 - \omega^2)^2}} \\ + \varphi &= -\delta = \tan^{-1}\frac \delta {\omega_0^2 - \omega^2}\\ + \\ + y(t) &= \frac 1 a \sin(\omega t - \delta) \\ + > \end{align*} + +
+ +## Products of Complex Numbers + +Suppose we have 2 complex numbers: + +$$z_1 = x_1 + iy_1 = r_1e^{i\theta_1}$$ +$$z_2 = x_2 + iy_2 = r_2e^{i\theta_2}$$ + +Using $e^a e^b = e^{a+b}$, the product is: + +\begin{align*} +z_3 = z_1 z_2 &= (r_1e^{i\theta_1})(r_2e^{i\theta_2}) \\ +&= r_1r_2e^{i\theta_1}e^{i\theta_2} \\ +&= r_1r_2e^{i(\theta_1+\theta_2)} \\ +\\ +|z_1z_2| &= |z_1|\times|z_2| \\ +\arg z_1z_2 &= \arg z_1 \times \arg z_2 +\end{align*} + +## de Moivre's Theorem + +Let $z = re^{i\theta}$. Consider $z^n$. + +Since $z = r(\cos\theta + i\sin\theta)$, +\begin{align*} +z^n &= r^n(\cos\theta + i\sin\theta)^n &\text{(1)} \\ +\end{align*} + +But also + +\begin{align*} +z^n &= (re^{i\theta})^n \\ + &= r^n(e^{i\theta})^n \\ + &= r^ne^{in\theta} \\ + &= r^n(\cos{n\theta} + i\sin{n\theta}) &\text{(2)} \\ +\end{align*} + +By equating (1) and (2), we find de Moivre's theorem: + +\begin{align*} +r^n(\cos\theta +i\sin\theta)^n &= r^n(\cos{n\theta} + i\sin{n\theta}) \\ +(\cos\theta +i\sin\theta)^n &= (\cos{n\theta} + i\sin{n\theta}) +\end{align*} + +
+ + +### Example 1 + +Write $1+i$ in polar form and use de Moivre's theorem to calculate $(1+i)^{15}$. + + + +> \begin{align*} + r &= |1+i| = \sqrt2 \\ + \theta &= \arg{1+i} = \frac \pi 4 \\ + \\ + \text{So } 1 + i &= \sqrt2(\cos{\frac pi 4} + i\sin{\frac \pi 4}) = \sqrt2e^{i\frac \pi 4} \text{ and}\\ + (i+i)^{15} &= (\sqrt2)^{15}\left(\cos{\frac \pi 4} + i\sin{\frac \pi 4}\right)^{15} \\ + &= 2^{\frac 15 2} \left(\cos{\frac{15\pi} 4} + i\sin{\frac{15\pi} 4}\right) \\ + &= 2^{\frac 15 2} \left(\frac 1 {\sqrt2} - \frac i {\sqrt2}\right) \\ + &= 2^7 (1 - i) \\ + &= 128 - 128i +> \end{align*} +
+ +
+ + +### Example 2 + +Use de Moivre's theorem to show that + +\begin{align*} +\cos{2\theta} &= \cos^2\theta-\sin^2\theta \\ +\text{and} \\ +\sin{2\theta} &= 2\sin\theta\cos\theta +\end{align*} + + + +> Let $n=2$: + +> \begin{align*} + (\cos\theta+i\sin\theta)^2 &= \cos^2\theta + 2i\sin\theta\cos\theta - \sin^2\theta \\ + \text{Real part: } \cos^2\theta - \sin^2\theta &= \cos{2\theta}\\ + \text{Imaginary part: } 2\sin\theta\cos\theta &= \sin{2\theta} +> \end{align*} + +
+ +
+ + +### Example 3 + +Given that $n \in \mathbb{N}$ and $\omega = -1 + i$, show that +$w^n + \bar{w}^n = 2^{\frac n 2 + 1}\cos{\frac{3n\pi} 4}$ with Euler's formula. + + + +> \begin{align*} + r &= \sqrt{2} \\ + \arg \omega = \theta &= \frac 3 4 \pi \\ + \\ + \omega^n &= r^n(cos{n\theta} + i\sin{n\theta}) \\ + \bar\omega^n &= r^n(cos{n\theta} - i\sin{n\theta}) \\ + \omega^n + \bar\omega^n &= r^n(2\cos{n\theta}) \\ + &= 2^{\frac n 2 + 1}\cos{\frac {3n\pi} 4} +> \end{align*} + +
+ +## Complex Roots of Polynomials + +
+ + +### Example + +Find which complex numbers $z$ satisfy + +$$z^3 = 8i$$ + + + +> 1. Write $8i$ in exponential form, +> +> $|8i| = 8$ and $\arg{8i} = \frac \pi 2$ +> +> $\therefore 8i = 8e^{i\frac \pi 2}$ +> +> +> 2. Let the solution be $r = re^{i\theta}$. +> +> Then $z^3 = r^3e^{3i\theta}$. +> +> 3. $z^3 = r^3e^{3i\theta} = 8e^{i\frac \pi 2}$ +> +> i. Compare modulus: +> +> $r^3 = 8 \rightarrow r = 2$ +> +> ii. Compare argument: +> +> $$3\theta = \frac \pi 2$$ +> +> is a solution but there are others since +> +> $$e^{i\frac \pi 2} = e^{i \frac \pi 2 + 2n\pi}$$ +> +> so we get a solution whenever +> +> $$3\theta = \frac \pi 2 + 2n\pi$$ +> +> for any integer `n` +> +> - $n = 0 \rightarrow z = \sqrt3 + i$ +> - $n = 1 \rightarrow z = -\sqrt3 + i$ +> - $n = 2 \rightarrow z = -2i$ +> - $n = 3 \rightarrow z = \sqrt3 + i$ +> - $n = 4 \rightarrow z = -\sqrt3 + i$ +> - The solutions start repeating as you can see +> +> In general, an $n$-th order polynomial has exactly $n$ complex roots. +> Some of these complex roots may be real numbers. +> +> 4. There are three solutions + +
diff --git a/mechanical/mmme1026_maths_for_engineering.md b/mechanical/mmme1026_maths_for_engineering/systems_and_matrices.md similarity index 63% rename from mechanical/mmme1026_maths_for_engineering.md rename to mechanical/mmme1026_maths_for_engineering/systems_and_matrices.md index ca00755..5fdb8a5 100755 --- a/mechanical/mmme1026_maths_for_engineering.md +++ b/mechanical/mmme1026_maths_for_engineering/systems_and_matrices.md @@ -1,394 +1,9 @@ --- author: Alvie Rahman date: \today -title: MMME1026 // Mathematics for Engineering -tags: [ uni, nottingham, mechanical, engineering, mmme1026, maths, complex_numbers ] +title: MMME1026 // Systems of Equations and Matrices +tags: [ uni, nottingham, mechanical, engineering, mmme1026, maths, systems_of_equations, matrices ] --- - -# Complex Numbers - -## What is a Complex Number? - -- $i$ is the unit imaginary number, which is defined by: - - $$ i^2 = -1 $$ - -- An arbritary complex number is written in the form - - $$z = x + iy$$ - - Where: - - - $x$ is the real part of $z$ (which you may seen written as $\Re(z) = x$ or Re$(z) = x$) - - $y$ is the imaginary part of $z$ (which you may seen written as $\Im(z) = y$ or Im$(z) = y$) - -- Two complex numbers are equal if both their real and imaginary parts are equal - - e.g. $$(3 + 4i) + (1 -2i) = (3+1) + i(4-2) = 2 + 2i$$ - -### The Complex Conjugate - -Given complex number $z$: - -$$z = z + iy$$ - -The complex conjugate of z, $\bar z$ is: - -$$\bar{z} = z -iy$$ - -### Division of Complex Numbers - -- Multiply numerator and denominator by the conjugate of the denominator - -
- - -#### Example - - - -> \begin{align*} - z_1 &= 5 + i \\ - z_2 &= 1 -i \\ - \\ - \frac{z_1}{z_2} &= \frac{5+i}{1-i} \cdot \frac{\bar{z_2}}{\bar{z_2}} = \frac{(5+i)(1+i)}{(1-i)(1+i)} \\ - &= \frac{5 + i + 5i -1}{1 + 1} \\ - &= \frac{4 + 6i}{2} = 2 + 3i -> \end{align*} - -
- -### Algebra and Conjugation - -When taking complex conjugate of an algebraic expresion, we can replace $i$ by $-i$ before or after -doing the algebraic operations: - -\begin{align*} -\overline{z_1+z_2} &= \bar{z_1}+\bar{z_2} \\ -\overline{z_1z_2} &= \bar{z_1}\bar{z_2} \\ -\overline{z_1/z_2} &= \frac{\bar{z_1}}{\bar{z_2}} -\end{align*} - -The conjugate of a real number is the same as that number. - -#### Application - -If $z$ is a root of the polynomial equation - -$$0 = az^2 + bz + c$$ - -with **real** coefficients $a$, $b$, and $c$, then $\bar{z}$ is also a root because - -\begin{align*} -0 &= \overline{az^2 + bz + c} \\ - &= \bar{a}\bar{z}^2 + \bar{b}\bar{z} + \bar{c} \\ - &= a\bar{z}^2 + b\bar{z} + c -\end{align*} - -### The Argand Diagram - -A general complex number $z = x + iy$ has two components so it can can be represented as a point in -the plane with Cartesion coordinates $(x, y)$. - -\begin{align*} -4-2i &\leftrightarrow (4, -2) \\ --i &\leftrightarrow (0, -1) \\ -z &\leftrightarrow (x, y) \\ -\bar z &\leftrightarrow (x, -y) -\end{align*} - -### Plotting on a Polar Graph - -We can also describe points in the complex plain with polar coordinates $(r, \theta)$: - -\begin{align*} -z &= r(\cos\theta + i\sin\theta) &\text{ polar form of $z$} \\ -r &= \sqrt{x^2+y^2} &\text{(modulus)}\\ -\theta &= \arg z,\text{ where} \tan \theta = \frac y x &\text{(argument)} \\ -x &= r\cos \theta \\ -y &= r\sin \theta -\end{align*} - -Be careful when turning $(x, y)$ into $(r, \theta)$ form as $\tan^{-1} \frac y x = \theta$ does not -always hold true as there are many solutions. - -#### Choosing $\theta$ Correctly - -1. Determine which quadrant the point is in (draw a picture). -2. Find a value of $\theta$ such that $\tan \theta = \frac y x$ and check that it is consistent. - If it puts you in the wrong quadrant, add or subtract $\pi$. - -## Exponential Functions - -- The exponential function $f(x) = \exp x$ may be wirtten as an infinite series: - - $$\exp x = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots $$ - -- The function $f(x) = e^{-x}$ is just $\frac 1 {e^x}$ -- Note the important properties: - -\begin{align*} -e^{a+b} &= e^a e^b \\ -(e^a)^b &= e^{ab} -\end{align*} - -## Euler's Formula - -$$e^{i\theta} = \cos\theta + i\sin\theta$$ - -- Properties of $e^{i\theta}$: For any real angle $\theta$ we have - - $$|e^{i\theta}| = |\cos\theta + i\sin\theta| = \sqrt{\cos^2\theta + \sin^2\theta} = 1$$ - - and - - $$ \arg {e^{i\theta}} = \theta $$ - -- A complex number in *polar form*, where $r = |z|$, and $\theta = \arg z$, may alternatively be - written in its *exponential form*: - - $$z = re^{i\theta}$$ - - **Note**: $$\bar z = r\cos\theta - ir\sin\theta = re^{-i\theta}$$ - -
- - -### Example 1 - -Write $z = -1 + i$ in exponential form - - - -> $\arg z = \frac {3\pi} 4$ -> $|z| = \sqrt 2$ -> -> So $z = \sqrt2e^{i\frac{3\pi} 4}$ - -
- -
- - -### Example 2 - -The equations for a mechanical vibration problem are found to have the following mathematical -solution: - -$$z(t) = \frac{e^{i\omega t}}{\omega_0^2-\omega^2 + i\gamma}$$ - - - -where $t$ represents time and $\omega$, $\omega_0$ and $\gamma$ are all positive real physical -constants. -Although $z(t)$ -is complex and cannot directly represent a physical solution, it turns out that the real and -imaginary parts $x(t)$ and $y(t)$ in $z(t) = x(t) + iy(t)$ can. Polar notation can be used to extract -this physical information efficiently as follows: - -a. Put the denominator in the form - - $$ae^{i\delta}$$ - - where you should give explicit expressions for $a$ and $\delta$ in terms of $\gamma$, $\gamma_0$, - and $\gamma$. - - - > \begin{align*} - a &= \sqrt{\gamma^2 + (\omega_0^2 - \omega^2)^2} \\ - \delta &= \tan^{-1}\frac \delta {\omega_0^2 - \omega^2} - > \end{align*} - -b. Hence find the constants $b$ and $\varphi$ such that - - $$x(t) = b\cos(\omega t + \varphi)$$ - - and write a similar expression for $y(t)$. - - > \begin{align*} - z &= \frac{e^i\omega t}{ae^{i\delta}} = \frac 1 a e^{i (\omega t - \delta)} \\ - x + iy &= \frac 1 a \cos(\omega t - \delta) + \frac 1 a \sin(\omega t - \delta) \\ - \therefore \Re z &= x = \frac 1 a \cos(\omega t - \delta), \\ - \Im z &= y = \frac 1 a \sin(\omega t - \delta) \\ - \\ - b &= \frac 1 a = \frac 1 {\sqrt{\gamma^2 + (\omega_0^2 - \omega^2)^2}} \\ - \varphi &= -\delta = \tan^{-1}\frac \delta {\omega_0^2 - \omega^2}\\ - \\ - y(t) &= \frac 1 a \sin(\omega t - \delta) \\ - > \end{align*} - -
- -## Products of Complex Numbers - -Suppose we have 2 complex numbers: - -$$z_1 = x_1 + iy_1 = r_1e^{i\theta_1}$$ -$$z_2 = x_2 + iy_2 = r_2e^{i\theta_2}$$ - -Using $e^a e^b = e^{a+b}$, the product is: - -\begin{align*} -z_3 = z_1 z_2 &= (r_1e^{i\theta_1})(r_2e^{i\theta_2}) \\ -&= r_1r_2e^{i\theta_1}e^{i\theta_2} \\ -&= r_1r_2e^{i(\theta_1+\theta_2)} \\ -\\ -|z_1z_2| &= |z_1|\times|z_2| \\ -\arg z_1z_2 &= \arg z_1 \times \arg z_2 -\end{align*} - -## de Moivre's Theorem - -Let $z = re^{i\theta}$. Consider $z^n$. - -Since $z = r(\cos\theta + i\sin\theta)$, -\begin{align*} -z^n &= r^n(\cos\theta + i\sin\theta)^n &\text{(1)} \\ -\end{align*} - -But also - -\begin{align*} -z^n &= (re^{i\theta})^n \\ - &= r^n(e^{i\theta})^n \\ - &= r^ne^{in\theta} \\ - &= r^n(\cos{n\theta} + i\sin{n\theta}) &\text{(2)} \\ -\end{align*} - -By equating (1) and (2), we find de Moivre's theorem: - -\begin{align*} -r^n(\cos\theta +i\sin\theta)^n &= r^n(\cos{n\theta} + i\sin{n\theta}) \\ -(\cos\theta +i\sin\theta)^n &= (\cos{n\theta} + i\sin{n\theta}) -\end{align*} - -
- - -### Example 1 - -Write $1+i$ in polar form and use de Moivre's theorem to calculate $(1+i)^{15}$. - - - -> \begin{align*} - r &= |1+i| = \sqrt2 \\ - \theta &= \arg{1+i} = \frac \pi 4 \\ - \\ - \text{So } 1 + i &= \sqrt2(\cos{\frac pi 4} + i\sin{\frac \pi 4}) = \sqrt2e^{i\frac \pi 4} \text{ and}\\ - (i+i)^{15} &= (\sqrt2)^{15}\left(\cos{\frac \pi 4} + i\sin{\frac \pi 4}\right)^{15} \\ - &= 2^{\frac 15 2} \left(\cos{\frac{15\pi} 4} + i\sin{\frac{15\pi} 4}\right) \\ - &= 2^{\frac 15 2} \left(\frac 1 {\sqrt2} - \frac i {\sqrt2}\right) \\ - &= 2^7 (1 - i) \\ - &= 128 - 128i -> \end{align*} -
- -
- - -### Example 2 - -Use de Moivre's theorem to show that - -\begin{align*} -\cos{2\theta} &= \cos^2\theta-\sin^2\theta \\ -\text{and} \\ -\sin{2\theta} &= 2\sin\theta\cos\theta -\end{align*} - - - -> Let $n=2$: - -> \begin{align*} - (\cos\theta+i\sin\theta)^2 &= \cos^2\theta + 2i\sin\theta\cos\theta - \sin^2\theta \\ - \text{Real part: } \cos^2\theta - \sin^2\theta &= \cos{2\theta}\\ - \text{Imaginary part: } 2\sin\theta\cos\theta &= \sin{2\theta} -> \end{align*} - -
- -
- - -### Example 3 - -Given that $n \in \mathbb{N}$ and $\omega = -1 + i$, show that -$w^n + \bar{w}^n = 2^{\frac n 2 + 1}\cos{\frac{3n\pi} 4}$ with Euler's formula. - - - -> \begin{align*} - r &= \sqrt{2} \\ - \arg \omega = \theta &= \frac 3 4 \pi \\ - \\ - \omega^n &= r^n(cos{n\theta} + i\sin{n\theta}) \\ - \bar\omega^n &= r^n(cos{n\theta} - i\sin{n\theta}) \\ - \omega^n + \bar\omega^n &= r^n(2\cos{n\theta}) \\ - &= 2^{\frac n 2 + 1}\cos{\frac {3n\pi} 4} -> \end{align*} - -
- -## Complex Roots of Polynomials - -
- - -### Example - -Find which complex numbers $z$ satisfy - -$$z^3 = 8i$$ - - - -> 1. Write $8i$ in exponential form, -> -> $|8i| = 8$ and $\arg{8i} = \frac \pi 2$ -> -> $\therefore 8i = 8e^{i\frac \pi 2}$ -> -> -> 2. Let the solution be $r = re^{i\theta}$. -> -> Then $z^3 = r^3e^{3i\theta}$. -> -> 3. $z^3 = r^3e^{3i\theta} = 8e^{i\frac \pi 2}$ -> -> i. Compare modulus: -> -> $r^3 = 8 \rightarrow r = 2$ -> -> ii. Compare argument: -> -> $$3\theta = \frac \pi 2$$ -> -> is a solution but there are others since -> -> $$e^{i\frac \pi 2} = e^{i \frac \pi 2 + 2n\pi}$$ -> -> so we get a solution whenever -> -> $$3\theta = \frac \pi 2 + 2n\pi$$ -> -> for any integer `n` -> -> - $n = 0 \rightarrow z = \sqrt3 + i$ -> - $n = 1 \rightarrow z = -\sqrt3 + i$ -> - $n = 2 \rightarrow z = -2i$ -> - $n = 3 \rightarrow z = \sqrt3 + i$ -> - $n = 4 \rightarrow z = -\sqrt3 + i$ -> - The solutions start repeating as you can see -> -> In general, an $n$-th order polynomial has exactly $n$ complex roots. -> Some of these complex roots may be real numbers. -> -> 4. There are three solutions - -
- # Systems of Equations (Simultaneous Equations) ## Gaussian Elimination