more consistent use of details/summary
This commit is contained in:
parent
dc1cd6f8ff
commit
ef91ba0126
@ -40,6 +40,9 @@ Its range has to exclude all those values of $x$ where $g(x) = 0$.
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
### Inverse Functions
|
### Inverse Functions
|
||||||
|
|
||||||
Consider the function $f(x) = y$.
|
Consider the function $f(x) = y$.
|
||||||
@ -48,6 +51,12 @@ we can define the inverse $f^{-1}$ as:
|
|||||||
|
|
||||||
$$f^{-1}(y) = f^{-1}(f(x)) = x$$
|
$$f^{-1}(y) = f^{-1}(f(x)) = x$$
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
### Limits
|
### Limits
|
||||||
|
|
||||||
Consider the following:
|
Consider the following:
|
||||||
@ -64,6 +73,8 @@ $$\lim_{x \rightarrow a} f(x)$$
|
|||||||
|
|
||||||
to be the limiting value, if it exists, of $f(x)$ as $x$ gets approaches $a$.
|
to be the limiting value, if it exists, of $f(x)$ as $x$ gets approaches $a$.
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
#### Limits from Above and Below
|
#### Limits from Above and Below
|
||||||
|
|
||||||
Sometimes approaching 0 with small positive values of $x$ gives you a different limit from
|
Sometimes approaching 0 with small positive values of $x$ gives you a different limit from
|
||||||
@ -79,12 +90,16 @@ $$\lim_{x \rightarrow a^-} f(x)$$
|
|||||||
|
|
||||||
If the two limits are equal, we simply refer to the *limit*.
|
If the two limits are equal, we simply refer to the *limit*.
|
||||||
|
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
## Important Functions
|
## Important Functions
|
||||||
|
|
||||||
### Exponential Function
|
### Exponential Function
|
||||||
|
|
||||||
$$f(x) = e^x = \exp x$$
|
$$f(x) = e^x = \exp x$$
|
||||||
|
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>
|
<summary>
|
||||||
It can also be written as an infinite series:
|
It can also be written as an infinite series:
|
||||||
|
Loading…
Reference in New Issue
Block a user