Compare commits
2 Commits
00d1758c35
...
43031855fe
Author | SHA1 | Date | |
---|---|---|---|
43031855fe | |||
83cd3ad585 |
@ -120,4 +120,44 @@ where $M$, $L$, and $T$ are units of mass, length, and time respectively.
|
|||||||
The two equations results in some simple simultaneous equations to solve to find the
|
The two equations results in some simple simultaneous equations to solve to find the
|
||||||
coefficients $a$, $b$, $c$, $d$, $e$, $f$.
|
coefficients $a$, $b$, $c$, $d$, $e$, $f$.
|
||||||
|
|
||||||
|
# Standard Nondimensional Groups in Fluids
|
||||||
|
|
||||||
|
This is not an exhaustive list.
|
||||||
|
|
||||||
|
## Reynolds Number
|
||||||
|
|
||||||
|
$$\text{Re} = \frac{\rho U L}{\mu}$$
|
||||||
|
|
||||||
|
Represents ratio of intertial forces over viscous forces.
|
||||||
|
Important in all viscous flows.
|
||||||
|
|
||||||
|
## Froude Number
|
||||||
|
|
||||||
|
$$\text{Fr} = \frac{U^2}{gL}$$
|
||||||
|
|
||||||
|
Represents ratio of inerital forces over gravitational forces.
|
||||||
|
Important in flows with interfaces (e.g. gas-liquid).
|
||||||
|
|
||||||
|
## Weber Number
|
||||||
|
|
||||||
|
$$\text{We} = \frac{rho U^2 L}{\sigma}$$
|
||||||
|
|
||||||
|
where $\sigma$ is the surface tension coeffecient.
|
||||||
|
|
||||||
|
Represents ratio of inertial to capillary forces.
|
||||||
|
Important to flows with strong surface tension effects (e.g. droplets,
|
||||||
|
bubbles, jets)
|
||||||
|
|
||||||
|
## Strouhal Number
|
||||||
|
|
||||||
|
$$\text{St} = \frac{fL}{U}$$
|
||||||
|
|
||||||
|
where $f$ is frequency.
|
||||||
|
|
||||||
|
Important in flows with velocity oscillations.
|
||||||
|
|
||||||
|
## Mach Number
|
||||||
|
|
||||||
|
$$\text{Ma} = \frac U a$$
|
||||||
|
|
||||||
|
|
||||||
|
86
uni/mmme/2xxx/2051_electromechanical_devices/fundamentals.md
Executable file
86
uni/mmme/2xxx/2051_electromechanical_devices/fundamentals.md
Executable file
@ -0,0 +1,86 @@
|
|||||||
|
---
|
||||||
|
author: Akbar Rahman
|
||||||
|
date: \today
|
||||||
|
title: MMME2051 // Electrical Engineering Fundamentals
|
||||||
|
tags: [ mmme2051 ]
|
||||||
|
uuid: 412c8cb8-ec0c-4d6f-b899-f1296f4fc639
|
||||||
|
---
|
||||||
|
|
||||||
|
# Across Variable vs Through Variable
|
||||||
|
|
||||||
|
Across variables:
|
||||||
|
|
||||||
|
- Appears across two terminal of an element
|
||||||
|
- Measured relative to a reference point
|
||||||
|
- e.g. voltage
|
||||||
|
|
||||||
|
Through variables:
|
||||||
|
|
||||||
|
- Value is same at both terminals of an element
|
||||||
|
- e.g. current
|
||||||
|
|
||||||
|
# Ohm's Law
|
||||||
|
|
||||||
|
For all components that follow Ohm's law:
|
||||||
|
|
||||||
|
$$V = IR$$
|
||||||
|
|
||||||
|
where $V$ is voltage across a component, $I$ is current through it, and $R$ is resistance of the component.
|
||||||
|
|
||||||
|
# Impedance vs Resistance
|
||||||
|
|
||||||
|
- Impedance is used when there are energy storage elements to a component.
|
||||||
|
- Resistance, a special case of impedance, can be used when there is no storage element
|
||||||
|
|
||||||
|
# Kirchhoff's Laws
|
||||||
|
|
||||||
|
## Current
|
||||||
|
|
||||||
|
The sum of current entering a node is 0
|
||||||
|
|
||||||
|
$$\sum_n I_n = 0$$
|
||||||
|
|
||||||
|
## Voltage
|
||||||
|
|
||||||
|
The sum of voltage around a closed loop is 0
|
||||||
|
|
||||||
|
$$\sum_n V_n = 0$$
|
||||||
|
|
||||||
|
# Energy Storing Elements --- Reactive Elements
|
||||||
|
|
||||||
|
When you apply a voltage to a reactive element, the reactive element will start storing energy.
|
||||||
|
When the voltage is removed, it will push current until all energy is dissipated.
|
||||||
|
|
||||||
|
There are two types of Reactive Elements
|
||||||
|
|
||||||
|
## Inductors
|
||||||
|
|
||||||
|
A coil of wire wound around a magnetic core, such as iron.
|
||||||
|
|
||||||
|
They have a property, inductance, with SI unit henry and symbol H.
|
||||||
|
|
||||||
|
For an inductor:
|
||||||
|
|
||||||
|
$$V = L\frac{\mathrm{d}I}{\mathrm{d}t}$$
|
||||||
|
|
||||||
|
where $L$ is the inductance of the coil.
|
||||||
|
|
||||||
|
Energy is stored in the magnetic flux around the coil.
|
||||||
|
|
||||||
|
This creates the behaviour of trying to minimize change in current.
|
||||||
|
|
||||||
|
If you remove the voltage source and open the circuit, the inductor would have a voltage approaching
|
||||||
|
infinity, causing problems if the energy stored in the inductor is high enough.
|
||||||
|
|
||||||
|
## Capacitor
|
||||||
|
|
||||||
|
For a capacitor:
|
||||||
|
|
||||||
|
$$I = C\frac{\mathrm{d}V}{\mathrm{d}t}$$
|
||||||
|
|
||||||
|
Energy is stored in the form of electrostatic attraction in the adjacent plates.
|
||||||
|
|
||||||
|
Capacitors try to minimize changes in voltage.
|
||||||
|
|
||||||
|
If a capacitor is shorted, the current through the connecting wires will be extremely high, causing
|
||||||
|
the wires to heat up.
|
Loading…
Reference in New Issue
Block a user