Compare commits
3 Commits
841db6edbd
...
b19ef43cd8
Author | SHA1 | Date | |
---|---|---|---|
b19ef43cd8 | |||
9be52cc368 | |||
e171861da8 |
@ -42,14 +42,14 @@ $$\bar{z} = z -iy$$
|
||||
|
||||
#### Example
|
||||
|
||||
\begin{align*}
|
||||
z_1 &= 5 + i \\
|
||||
z_2 &= 1 -i \\
|
||||
\\
|
||||
\frac{z_1}{z_2} &= \frac{5+i}{1-i} \cdot \frac{\bar{z_2}}{\bar{z_2}} = \frac{(5+i)(1+i)}{(1-i)(1+i)} \\
|
||||
&= \frac{5 + i + 5i -1}{1 + 1} \\
|
||||
&= \frac{4 + 6i}{2} = 2 + 3i
|
||||
\end{align*}
|
||||
> \begin{align*}
|
||||
z_1 &= 5 + i \\
|
||||
z_2 &= 1 -i \\
|
||||
\\
|
||||
\frac{z_1}{z_2} &= \frac{5+i}{1-i} \cdot \frac{\bar{z_2}}{\bar{z_2}} = \frac{(5+i)(1+i)}{(1-i)(1+i)} \\
|
||||
&= \frac{5 + i + 5i -1}{1 + 1} \\
|
||||
&= \frac{4 + 6i}{2} = 2 + 3i
|
||||
> \end{align*}
|
||||
|
||||
### Algebra and Conjugation
|
||||
|
||||
@ -111,7 +111,7 @@ always hold true as there are many solutions.
|
||||
2. Find a value of $\theta$ such that $\tan \theta = \frac y x$ and check that it is consistent.
|
||||
If it puts you in the wrong quadrant, add or subtract $\pi$.
|
||||
|
||||
# Lecture 2 // Complex Numbers (2021-10-11)
|
||||
# Lecture 2 // Complex Numbers (2021-10-12)
|
||||
|
||||
## Exponential Functions
|
||||
|
||||
@ -146,14 +146,59 @@ $$e^{i\theta} = \cos\theta + i\sin\theta$$
|
||||
|
||||
**Note**: $$\bar z = r\cos\theta - ir\sin\theta = re^{-i\theta}$$
|
||||
|
||||
Example:
|
||||
|
||||
> Write $z = -1 + i$ in exponential form:
|
||||
>
|
||||
> $\arg z = \frac {3\pi} 4$
|
||||
> $|z| = \sqrt 2$
|
||||
>
|
||||
> So $z = \sqrt2e^{i\frac{3\pi} 4}$
|
||||
### Example 1
|
||||
|
||||
Write $z = -1 + i$ in exponential form
|
||||
|
||||
> $\arg z = \frac {3\pi} 4$
|
||||
> $|z| = \sqrt 2$
|
||||
>
|
||||
> So $z = \sqrt2e^{i\frac{3\pi} 4}$
|
||||
|
||||
### Example 2
|
||||
|
||||
The equations for a mechanical vibration problem are found to have the following mathematical
|
||||
solution:
|
||||
|
||||
$$z(t) = \frac{e^{i\omega t}}{\omega_0^2-\omega^2 + i\gamma}$$
|
||||
|
||||
where $t$ represents time and $\omega$, $\omega_0$ and $\gamma$ are all positive real physical
|
||||
constants.
|
||||
Although $z(t)$
|
||||
is complex and cannot directly represent a physical solution, it turns out that the real and
|
||||
imaginary parts $x(t)$ and $y(t)$ in $z(t) = x(t) + iy(t)$ can. Polar notation can be used to extract
|
||||
this physical information efficiently as follows:
|
||||
|
||||
a. Put the denominator in the form
|
||||
|
||||
$$ae^{i\delta}$$
|
||||
|
||||
where you should give explicit expressions for $a$ and $\delta$ in terms of $\gamma$, $\gamma_0$,
|
||||
and $\gamma$.
|
||||
|
||||
|
||||
> \begin{align*}
|
||||
a &= \sqrt{\gamma^2 + (\omega_0^2 - \omega^2)^2} \\
|
||||
\delta &= \tan^{-1}\frac \delta {\omega_0^2 - \omega^2}
|
||||
> \end{align*}
|
||||
|
||||
b. Hence find the constants $b$ and $\varphi$ such that
|
||||
|
||||
$$x(t) = b\cos(\omega t + \varphi)$$
|
||||
|
||||
and write a similar expression for $y(t)$.
|
||||
|
||||
> \begin{align*}
|
||||
z &= \frac{e^i\omega t}{ae^{i\delta}} = \frac 1 a e^{i (\omega t - \delta)} \\
|
||||
x + iy &= \frac 1 a \cos(\omega t - \delta) + \frac 1 a \sin(\omega t - \delta) \\
|
||||
\therefore \Re z &= x = \frac 1 a \cos(\omega t - \delta), \\
|
||||
\Im z &= y = \frac 1 a \sin(\omega t - \delta) \\
|
||||
\\
|
||||
b &= \frac 1 a = \frac 1 {\sqrt{\gamma^2 + (\omega_0^2 - \omega^2)^2}} \\
|
||||
\varphi &= -\delta = \tan^{-1}\frac \delta {\omega_0^2 - \omega^2}\\
|
||||
\\
|
||||
y(t) &= \frac 1 a \sin(\omega t - \delta) \\
|
||||
> \end{align*}
|
||||
|
||||
## Products of Complex Numbers
|
||||
|
||||
@ -193,17 +238,17 @@ z^n &= (re^{i\theta})^n \\
|
||||
|
||||
Write $1+i$ in polar form and use de Moivre's theorem to calculate $(1+i)^{15}$.
|
||||
|
||||
\begin{align*}
|
||||
r &= |1+i| = \sqrt2 \\
|
||||
\theta &= \arg{1+i} = \frac \pi 4 \\
|
||||
\\
|
||||
\text{So } 1 + i &= \sqrt2(\cos{\frac pi 4} + i\sin{\frac \pi 4}) = \sqrt2e^{i\frac \pi 4} \text{ and}\\
|
||||
(i+i)^{15} &= (\sqrt2)^{15}\left(\cos{\frac \pi 4} + i\sin{\frac \pi 4}\right)^{15} \\
|
||||
&= 2^{\frac 15 2} \left(\cos{\frac{15\pi} 4} + i\sin{\frac{15\pi} 4}\right) \\
|
||||
&= 2^{\frac 15 2} \left(\frac 1 {\sqrt2} - \frac i {\sqrt2}\right) \\
|
||||
&= 2^7 (1 - i) \\
|
||||
&= 128 - 128i
|
||||
\end{align*}
|
||||
> \begin{align*}
|
||||
r &= |1+i| = \sqrt2 \\
|
||||
\theta &= \arg{1+i} = \frac \pi 4 \\
|
||||
\\
|
||||
\text{So } 1 + i &= \sqrt2(\cos{\frac pi 4} + i\sin{\frac \pi 4}) = \sqrt2e^{i\frac \pi 4} \text{ and}\\
|
||||
(i+i)^{15} &= (\sqrt2)^{15}\left(\cos{\frac \pi 4} + i\sin{\frac \pi 4}\right)^{15} \\
|
||||
&= 2^{\frac 15 2} \left(\cos{\frac{15\pi} 4} + i\sin{\frac{15\pi} 4}\right) \\
|
||||
&= 2^{\frac 15 2} \left(\frac 1 {\sqrt2} - \frac i {\sqrt2}\right) \\
|
||||
&= 2^7 (1 - i) \\
|
||||
&= 128 - 128i
|
||||
> \end{align*}
|
||||
|
||||
### Example 2
|
||||
|
||||
@ -215,13 +260,28 @@ Use de Moivre's theorem to show that
|
||||
\sin{2\theta} &= 2\sin\theta\cos\theta
|
||||
\end{align*}
|
||||
|
||||
Let $n=2$:
|
||||
> Let $n=2$:
|
||||
|
||||
\begin{align*}
|
||||
(\cos\theta+i\sin\theta)^2 &= \cos^2\theta + 2i\sin\theta\cos\theta - \sin^2\theta \\
|
||||
\text{Real part: } \cos^2\theta - \sin^2\theta &= \cos{2\theta}\\
|
||||
\text{Imaginary part: } 2\sin\theta\cos\theta &= \sin{2\theta}
|
||||
\end{align*}
|
||||
> \begin{align*}
|
||||
(\cos\theta+i\sin\theta)^2 &= \cos^2\theta + 2i\sin\theta\cos\theta - \sin^2\theta \\
|
||||
\text{Real part: } \cos^2\theta - \sin^2\theta &= \cos{2\theta}\\
|
||||
\text{Imaginary part: } 2\sin\theta\cos\theta &= \sin{2\theta}
|
||||
> \end{align*}
|
||||
|
||||
### Example 3
|
||||
|
||||
Given that $n \in \mathbb{N}$ and $\omega = -1 + i$, show that
|
||||
$w^n + \bar{w}^n = 2^{\frac n 2 + 1}\cos{\frac{3n\pi} 4}$ with Euler's formula.
|
||||
|
||||
> \begin{align*}
|
||||
r &= \sqrt{2} \\
|
||||
\arg \omega = \theta &= \frac 3 4 \pi \\
|
||||
\\
|
||||
\omega^n &= r^n(cos{n\theta} + i\sin{n\theta}) \\
|
||||
\bar\omega^n &= r^n(cos{n\theta} - i\sin{n\theta}) \\
|
||||
\omega^n + \bar\omega^n &= r^n(2\cos{n\theta}) \\
|
||||
&= 2^{\frac n 2 + 1}\cos{\frac {3n\pi} 4}
|
||||
> \end{align*}
|
||||
|
||||
## Complex Roots of Polynomials
|
||||
|
||||
@ -231,45 +291,45 @@ Which complex numbers $z$ satisfy
|
||||
|
||||
$$z^3 = 8i$$
|
||||
|
||||
1. Write $8i$ in exponential form,
|
||||
|
||||
$|8i| = 8$ and $\arg{8i} = \frac \pi 2$
|
||||
|
||||
$\therefore 8i = 8e^{i\frac \pi 2}$
|
||||
|
||||
|
||||
2. Let the solution be $r = re^{i\theta}$.
|
||||
|
||||
Then $z^3 = r^3e^{3i\theta}$.
|
||||
|
||||
3. $z^3 = r^3e^{3i\theta} = 8e^{i\frac \pi 2}$
|
||||
|
||||
i. Compare modulus:
|
||||
|
||||
$r^3 = 8 \rightarrow r = 2$
|
||||
|
||||
ii. Compare argument:
|
||||
|
||||
$$3\theta = \frac \pi 2$$
|
||||
|
||||
is a solution but there are others since
|
||||
|
||||
$$e^{i\frac \pi 2} = e^{i \frac \pi 2 + 2n\pi}$$
|
||||
|
||||
so we get a solution whenever
|
||||
|
||||
$$3\theta = \frac \pi 2 + 2n\pi$$
|
||||
|
||||
for any integer `n`
|
||||
|
||||
- $n = 0 \rightarrow z = \sqrt3 + i$
|
||||
- $n = 1 \rightarrow z = -\sqrt3 + i$
|
||||
- $n = 2 \rightarrow z = -2i$
|
||||
- $n = 3 \rightarrow z = \sqrt3 + i$
|
||||
- $n = 4 \rightarrow z = -\sqrt3 + i$
|
||||
- The solutions start repeating as you can see
|
||||
|
||||
In general, an $n$-th order polynomial has exactly $n$ complex roots.
|
||||
Some of these complex roots may be real numbers.
|
||||
|
||||
4. There are three solution
|
||||
> 1. Write $8i$ in exponential form,
|
||||
>
|
||||
> $|8i| = 8$ and $\arg{8i} = \frac \pi 2$
|
||||
>
|
||||
> $\therefore 8i = 8e^{i\frac \pi 2}$
|
||||
>
|
||||
>
|
||||
> 2. Let the solution be $r = re^{i\theta}$.
|
||||
>
|
||||
> Then $z^3 = r^3e^{3i\theta}$.
|
||||
>
|
||||
> 3. $z^3 = r^3e^{3i\theta} = 8e^{i\frac \pi 2}$
|
||||
>
|
||||
> i. Compare modulus:
|
||||
>
|
||||
> $r^3 = 8 \rightarrow r = 2$
|
||||
>
|
||||
> ii. Compare argument:
|
||||
>
|
||||
> $$3\theta = \frac \pi 2$$
|
||||
>
|
||||
> is a solution but there are others since
|
||||
>
|
||||
> $$e^{i\frac \pi 2} = e^{i \frac \pi 2 + 2n\pi}$$
|
||||
>
|
||||
> so we get a solution whenever
|
||||
>
|
||||
> $$3\theta = \frac \pi 2 + 2n\pi$$
|
||||
>
|
||||
> for any integer `n`
|
||||
>
|
||||
> - $n = 0 \rightarrow z = \sqrt3 + i$
|
||||
> - $n = 1 \rightarrow z = -\sqrt3 + i$
|
||||
> - $n = 2 \rightarrow z = -2i$
|
||||
> - $n = 3 \rightarrow z = \sqrt3 + i$
|
||||
> - $n = 4 \rightarrow z = -\sqrt3 + i$
|
||||
> - The solutions start repeating as you can see
|
||||
>
|
||||
> In general, an $n$-th order polynomial has exactly $n$ complex roots.
|
||||
> Some of these complex roots may be real numbers.
|
||||
>
|
||||
> 4. There are three solutions
|
||||
|
@ -151,3 +151,95 @@ The -ve sign indicates that as $z$, height, increases, $p$, pressure, decreases.
|
||||
|
||||
- It is usually better to use SI units
|
||||
- If in doubt, DA can be useful to check that your answer makes sense
|
||||
|
||||
# Lecture 2 // Manometers (2021-10-13)
|
||||
|
||||
![](./images/vimscrot-2021-10-13T09:09:32,037006075+01:00.png)
|
||||
|
||||
$$p_{1,gauge} = \rho g(z_2-z_1)$$
|
||||
|
||||
- Manometers work on the principle that pressure along any horizontal plane through a continuous
|
||||
fluid is constant
|
||||
- Manometers can be used to measure the pressure of a gas, vapour, or liquid
|
||||
- Manometers can measure higher pressures than a piezometer
|
||||
- Manometer fluid and working should be immiscible (don't mix)
|
||||
|
||||
![](./images/vimscrot-2021-10-13T09:14:59,628661490+01:00.png)
|
||||
|
||||
\begin{align*}
|
||||
p_A &= p_{A'} \\
|
||||
p_{bottom} &= p_{top} + \rho gh \\
|
||||
\rho_1 &= density\,of\,fluid\,1 \\
|
||||
\rho_2 &= density\,of\,fluid\,2
|
||||
\end{align*}
|
||||
|
||||
Left hand side:
|
||||
|
||||
$$p_A = p_1 + \rho_1g\Delta z_1$$
|
||||
|
||||
Right hand side:
|
||||
|
||||
$$p_{A'} = p_{at} + \rho_2g\Delta z_2$$
|
||||
|
||||
Equate and rearrange:
|
||||
|
||||
\begin{align*}
|
||||
p_1 + \rho_1g\Delta z_1 &= p_{at} + \rho_2g\Delta z_2 \\
|
||||
p_1-p_{at} &= g(\rho_2\Delta z_2 - \rho_1\Delta z_1) \\
|
||||
p_{1,gauge} &= g(\rho_2\Delta z_2 - \rho_1\Delta z_1)
|
||||
\end{align*}
|
||||
|
||||
If $\rho_a << \rho_2$:
|
||||
|
||||
$$\rho_{1,gauge} \approx \rho_2g\Delta z_2$$
|
||||
|
||||
## Differential U-Tube Manometer
|
||||
|
||||
![](./images/vimscrot-2021-10-13T09:37:02,070474894+01:00.png)
|
||||
|
||||
- Used to find the difference between two unknown pressures
|
||||
- Can be used for any fluid that doesn't react with manometer fluid
|
||||
- Same principle used in analysis
|
||||
|
||||
\begin{align*}
|
||||
p_A &= p_{A'} \\
|
||||
p_{bottom} &= p_{top} + \rho gh \\
|
||||
\rho_1 &= density\,of\,fluid\,1 \\
|
||||
\rho_2 &= density\,of\,fluid\,2
|
||||
\end{align*}
|
||||
|
||||
Left hand side:
|
||||
|
||||
$$p_A = p_1 + \rho_wg(z_C-z_A)$$
|
||||
|
||||
Right hand side:
|
||||
|
||||
$$p_B = p_2 + \rho_wg(z_C-z_B)$$
|
||||
|
||||
Right hand manometer fluid:
|
||||
|
||||
$$p_{A'} = p_B + \rho_mg(z_B - z_a)$$
|
||||
|
||||
\begin{align*}
|
||||
p_{A'} &= p_2 + \rho_mg(z_C - z_B) + \rho_mg(z_B - zA)\\
|
||||
&= p_2 + \rho_mg(z_C - z_B) + \rho_mg\Delta z \\
|
||||
\\
|
||||
p_A &= p_{A'} \\
|
||||
p_1 + \rho_wg(z_C-z_A) &= p_2 + \rho_mg(z_C - z_B) + \rho_mg\Delta z \\
|
||||
p_1 - p_2 &= \rho_wg(z_C-z_B-z_C+z_A) + \rho_mg\Delta z \\
|
||||
&= \rho_wg(z_A-z_B) + \rho_mg\Delta z \\
|
||||
&= -\rho_wg\Delta z + \rho_mg\Delta z
|
||||
\end{align*}
|
||||
|
||||
## Angled Differential Manometer
|
||||
|
||||
![](./images/vimscrot-2021-10-13T09:56:15,656796805+01:00.png)
|
||||
|
||||
- If the pipe is sloped then
|
||||
|
||||
$$p_1-p_2 = (\rho_m-\rho_w)g\Delta z + \rho_wg(z_{C2} - z_{C1})$$
|
||||
|
||||
- $p_1 > p_2$ as $p_1$ is lower
|
||||
- If there is no flow along the tube, then
|
||||
|
||||
$$p_1 = p_2 + \rho_wg(z_{C2} - z_{C1})$$
|
||||
|
Loading…
Reference in New Issue
Block a user