Compare commits

...

2 Commits

Author SHA1 Message Date
32199c7b2c
Use details/summary tag for examples 2021-10-14 15:31:31 +01:00
0deb97de3b
Formatting 2021-10-14 15:17:27 +01:00

View File

@ -19,8 +19,8 @@ tags: [ uni, nottingham, mmme1026, maths, complex_numbers ]
Where:
- $x$ is the real part of $z$ (Re($z$))
- $y$ is the imaginary part of $z$(Im($z$))
- $x$ is the real part of $z$ (which you may seen written as $\Re(z) = x$ or Re$(z) = x$)
- $y$ is the imaginary part of $z$ (which you may seen written as $\Im(z) = y$ or Im$(z) = y$)
- Two complex numbers are equal if both their real and imaginary parts are equal
@ -146,15 +146,23 @@ $$e^{i\theta} = \cos\theta + i\sin\theta$$
**Note**: $$\bar z = r\cos\theta - ir\sin\theta = re^{-i\theta}$$
<details>
<summary>
### Example 1
Write $z = -1 + i$ in exponential form
</summary>
> $\arg z = \frac {3\pi} 4$
> $|z| = \sqrt 2$
>
> So $z = \sqrt2e^{i\frac{3\pi} 4}$
</details>
<details>
<summary>
### Example 2
The equations for a mechanical vibration problem are found to have the following mathematical
@ -162,6 +170,8 @@ solution:
$$z(t) = \frac{e^{i\omega t}}{\omega_0^2-\omega^2 + i\gamma}$$
</summary>
where $t$ represents time and $\omega$, $\omega_0$ and $\gamma$ are all positive real physical
constants.
Although $z(t)$
@ -200,6 +210,8 @@ b. Hence find the constants $b$ and $\varphi$ such that
y(t) &= \frac 1 a \sin(\omega t - \delta) \\
> \end{align*}
</details>
## Products of Complex Numbers
Suppose we have 2 complex numbers:
@ -222,22 +234,35 @@ z_3 = z_1 z_2 &= (r_1e^{i\theta_1})(r_2e^{i\theta_2}) \\
Let $z = re^{i\theta}$. Consider $z^n$.
Since $z = r(\cos\theta + i\sin\theta)$,
\begin{align*}
\text{Since } z = r(\cos\theta + i\sin\theta) \\
z^n &= r^n(\cos\theta + i\sin\theta)^n &\text{(1)} \\
\text{But also} \\
\end{align*}
But also
\begin{align*}
z^n &= (re^{i\theta})^n \\
&= r^n(e^{i\theta})^n \\
&= r^ne^{in\theta} \\
&= r^n(\cos{n\theta} + i\sin{n\theta}) &\text{(2)} \\
\text{By equating (1) and (2), we find:}\\
\end{align*}
By equating (1) and (2), we find de Moivre's theorem:
\begin{align*}
r^n(\cos\theta +i\sin\theta)^n &= r^n(\cos{n\theta} + i\sin{n\theta}) \\
(\cos\theta +i\sin\theta)^n &= (\cos{n\theta} + i\sin{n\theta})
\end{align*}
<details>
<summary>
### Example 1
Write $1+i$ in polar form and use de Moivre's theorem to calculate $(1+i)^{15}$.
</summary>
> \begin{align*}
r &= |1+i| = \sqrt2 \\
\theta &= \arg{1+i} = \frac \pi 4 \\
@ -249,7 +274,10 @@ Write $1+i$ in polar form and use de Moivre's theorem to calculate $(1+i)^{15}$.
&= 2^7 (1 - i) \\
&= 128 - 128i
> \end{align*}
</details>
<details>
<summary>
### Example 2
Use de Moivre's theorem to show that
@ -260,6 +288,8 @@ Use de Moivre's theorem to show that
\sin{2\theta} &= 2\sin\theta\cos\theta
\end{align*}
</summary>
> Let $n=2$:
> \begin{align*}
@ -268,11 +298,17 @@ Use de Moivre's theorem to show that
\text{Imaginary part: } 2\sin\theta\cos\theta &= \sin{2\theta}
> \end{align*}
</details>
<details>
<summary>
### Example 3
Given that $n \in \mathbb{N}$ and $\omega = -1 + i$, show that
$w^n + \bar{w}^n = 2^{\frac n 2 + 1}\cos{\frac{3n\pi} 4}$ with Euler's formula.
</summary>
> \begin{align*}
r &= \sqrt{2} \\
\arg \omega = \theta &= \frac 3 4 \pi \\
@ -283,14 +319,20 @@ $w^n + \bar{w}^n = 2^{\frac n 2 + 1}\cos{\frac{3n\pi} 4}$ with Euler's formula.
&= 2^{\frac n 2 + 1}\cos{\frac {3n\pi} 4}
> \end{align*}
</details>
## Complex Roots of Polynomials
<details>
<summary>
### Example
Which complex numbers $z$ satisfy
Find which complex numbers $z$ satisfy
$$z^3 = 8i$$
</summary>
> 1. Write $8i$ in exponential form,
>
> $|8i| = 8$ and $\arg{8i} = \frac \pi 2$
@ -333,3 +375,5 @@ $$z^3 = 8i$$
> Some of these complex roots may be real numbers.
>
> 4. There are three solutions
</details>