Compare commits
2 Commits
b19ef43cd8
...
32199c7b2c
Author | SHA1 | Date | |
---|---|---|---|
32199c7b2c | |||
0deb97de3b |
@ -19,8 +19,8 @@ tags: [ uni, nottingham, mmme1026, maths, complex_numbers ]
|
||||
|
||||
Where:
|
||||
|
||||
- $x$ is the real part of $z$ (Re($z$))
|
||||
- $y$ is the imaginary part of $z$(Im($z$))
|
||||
- $x$ is the real part of $z$ (which you may seen written as $\Re(z) = x$ or Re$(z) = x$)
|
||||
- $y$ is the imaginary part of $z$ (which you may seen written as $\Im(z) = y$ or Im$(z) = y$)
|
||||
|
||||
- Two complex numbers are equal if both their real and imaginary parts are equal
|
||||
|
||||
@ -146,15 +146,23 @@ $$e^{i\theta} = \cos\theta + i\sin\theta$$
|
||||
|
||||
**Note**: $$\bar z = r\cos\theta - ir\sin\theta = re^{-i\theta}$$
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
### Example 1
|
||||
|
||||
Write $z = -1 + i$ in exponential form
|
||||
|
||||
</summary>
|
||||
|
||||
> $\arg z = \frac {3\pi} 4$
|
||||
> $|z| = \sqrt 2$
|
||||
>
|
||||
> So $z = \sqrt2e^{i\frac{3\pi} 4}$
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
### Example 2
|
||||
|
||||
The equations for a mechanical vibration problem are found to have the following mathematical
|
||||
@ -162,6 +170,8 @@ solution:
|
||||
|
||||
$$z(t) = \frac{e^{i\omega t}}{\omega_0^2-\omega^2 + i\gamma}$$
|
||||
|
||||
</summary>
|
||||
|
||||
where $t$ represents time and $\omega$, $\omega_0$ and $\gamma$ are all positive real physical
|
||||
constants.
|
||||
Although $z(t)$
|
||||
@ -200,6 +210,8 @@ b. Hence find the constants $b$ and $\varphi$ such that
|
||||
y(t) &= \frac 1 a \sin(\omega t - \delta) \\
|
||||
> \end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
## Products of Complex Numbers
|
||||
|
||||
Suppose we have 2 complex numbers:
|
||||
@ -222,22 +234,35 @@ z_3 = z_1 z_2 &= (r_1e^{i\theta_1})(r_2e^{i\theta_2}) \\
|
||||
|
||||
Let $z = re^{i\theta}$. Consider $z^n$.
|
||||
|
||||
Since $z = r(\cos\theta + i\sin\theta)$,
|
||||
\begin{align*}
|
||||
\text{Since } z = r(\cos\theta + i\sin\theta) \\
|
||||
z^n &= r^n(\cos\theta + i\sin\theta)^n &\text{(1)} \\
|
||||
\text{But also} \\
|
||||
\end{align*}
|
||||
|
||||
But also
|
||||
|
||||
\begin{align*}
|
||||
z^n &= (re^{i\theta})^n \\
|
||||
&= r^n(e^{i\theta})^n \\
|
||||
&= r^ne^{in\theta} \\
|
||||
&= r^n(\cos{n\theta} + i\sin{n\theta}) &\text{(2)} \\
|
||||
\text{By equating (1) and (2), we find:}\\
|
||||
\end{align*}
|
||||
|
||||
By equating (1) and (2), we find de Moivre's theorem:
|
||||
|
||||
\begin{align*}
|
||||
r^n(\cos\theta +i\sin\theta)^n &= r^n(\cos{n\theta} + i\sin{n\theta}) \\
|
||||
(\cos\theta +i\sin\theta)^n &= (\cos{n\theta} + i\sin{n\theta})
|
||||
\end{align*}
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
### Example 1
|
||||
|
||||
Write $1+i$ in polar form and use de Moivre's theorem to calculate $(1+i)^{15}$.
|
||||
|
||||
</summary>
|
||||
|
||||
> \begin{align*}
|
||||
r &= |1+i| = \sqrt2 \\
|
||||
\theta &= \arg{1+i} = \frac \pi 4 \\
|
||||
@ -249,7 +274,10 @@ Write $1+i$ in polar form and use de Moivre's theorem to calculate $(1+i)^{15}$.
|
||||
&= 2^7 (1 - i) \\
|
||||
&= 128 - 128i
|
||||
> \end{align*}
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
### Example 2
|
||||
|
||||
Use de Moivre's theorem to show that
|
||||
@ -260,6 +288,8 @@ Use de Moivre's theorem to show that
|
||||
\sin{2\theta} &= 2\sin\theta\cos\theta
|
||||
\end{align*}
|
||||
|
||||
</summary>
|
||||
|
||||
> Let $n=2$:
|
||||
|
||||
> \begin{align*}
|
||||
@ -268,11 +298,17 @@ Use de Moivre's theorem to show that
|
||||
\text{Imaginary part: } 2\sin\theta\cos\theta &= \sin{2\theta}
|
||||
> \end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
### Example 3
|
||||
|
||||
Given that $n \in \mathbb{N}$ and $\omega = -1 + i$, show that
|
||||
$w^n + \bar{w}^n = 2^{\frac n 2 + 1}\cos{\frac{3n\pi} 4}$ with Euler's formula.
|
||||
|
||||
</summary>
|
||||
|
||||
> \begin{align*}
|
||||
r &= \sqrt{2} \\
|
||||
\arg \omega = \theta &= \frac 3 4 \pi \\
|
||||
@ -283,14 +319,20 @@ $w^n + \bar{w}^n = 2^{\frac n 2 + 1}\cos{\frac{3n\pi} 4}$ with Euler's formula.
|
||||
&= 2^{\frac n 2 + 1}\cos{\frac {3n\pi} 4}
|
||||
> \end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
## Complex Roots of Polynomials
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
### Example
|
||||
|
||||
Which complex numbers $z$ satisfy
|
||||
Find which complex numbers $z$ satisfy
|
||||
|
||||
$$z^3 = 8i$$
|
||||
|
||||
</summary>
|
||||
|
||||
> 1. Write $8i$ in exponential form,
|
||||
>
|
||||
> $|8i| = 8$ and $\arg{8i} = \frac \pi 2$
|
||||
@ -333,3 +375,5 @@ $$z^3 = 8i$$
|
||||
> Some of these complex roots may be real numbers.
|
||||
>
|
||||
> 4. There are three solutions
|
||||
|
||||
</details>
|
||||
|
Loading…
Reference in New Issue
Block a user