## University of Nottingham School of Mathematical Sciences

MTHS2007

Advanced Mathematics and Statistics for Mechanical Engineers

## **Fourier Series**

## **Problem Sheet 2**

1. If  $f(x+2\ell) = f(x)$  for all x and

$$f(x) = \begin{cases} -1 & \text{for} & -\ell < x < 0, \\ 1 & \text{for} & 0 \le x \le \ell, \end{cases}$$

sketch the function f(x) in the range  $-2\ell < x < 2\ell$  and show that

$$f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin\left((2n-1)\frac{\pi x}{\ell}\right), \quad -\ell < x < \ell.$$

2. The function f(x) is defined by

$$f(x) = \begin{cases} -x & \text{for} & -\ell \le x < 0 \\ x & \text{for} & 0 \le x < \ell \end{cases}$$

and  $f(x+2\ell)=f(x)$ .

Sketch f(x) in  $-2\ell < x < 2\ell$  and find its Fourier series.

To what does the series converge when (a) x = 0 (b)  $x = \ell$ ?

By choosing an appropriate value for x in the Fourier series for f(x), show that

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}.$$

3. The function f(x) is defined by

$$f(x) = \begin{cases} x & \text{for} & 0 \le x < \frac{1}{3}\ell \\ \frac{1}{2}(\ell - x) & \text{for} & \frac{1}{3}\ell \le x < \ell \end{cases}$$

$$f(-x) = -f(x)$$
 and  $f(x+2\ell) = f(x)$ .

Sketch f(x) in  $-2\ell < x < 2\ell$  and find its Fourier series.

4. The function g(x) is defined by

$$g(x) = \begin{cases} x & \text{for } 0 \le x < \frac{1}{3}\ell \\ \frac{1}{2}(\ell - x) & \text{for } \frac{1}{3}\ell \le x < \ell \end{cases}$$

$$g(-x) = g(x)$$
 and  $g(x+2\ell) = g(x)$ .

Sketch g(x) in  $-2\ell < x < 2\ell$  and find its Fourier series.

5. Consider the function f defined by

$$f(x) = x \cos x$$

for  $-\pi < x \le \pi$ , and  $f(x + 2\pi) = f(x)$  for all x (ie the function is  $2\pi$ -periodic).

- (a) To what value will the Fourier series converge at  $x = \pi$ ?
- (b) Find the Fourier series for the function f. [Hint: You may use the fact that  $\sin((n+1)x) = \sin(nx)\cos x + \cos(nx)\sin x$ , and a similar formula for  $\sin((n-1)x)$ . Remember how we derived the formulas for  $a_n$  and  $b_n$ .]
- (c) Confirm that the series you found in part (b) converges to the value you have found in part (a) at  $x=\pi$ .