
Computer Modelling Techniques

MMME3086 UNUK, 2023/24

Numerical Methods: Solution of the 1D

unsteady diffusion equation

Author: Mirco Magnini

Office: Coates B100a

Email: mirco.magnini@nottingham.ac.uk

CONTENTS

Contents

1 Introduction 3

2 Finite-volume method for unsteady PDE 4

3 Explicit time-scheme 7

4 Crank-Nicolson time-scheme 9

5 Fully-implicit time-scheme 10

6 Matlab tutorials 11

6.1 Worked example 1: Fully-implicit time-scheme . 11

6.2 Suggested exercises . 13

2

1 INTRODUCTION

1 Introduction

In Lecture 1 we have seen how to discretise the diffusion equation in steady-state conditions using

the finite-volume method. In this lecture, we extend this methodology to learn how to discretise the

unsteady diffusion equation, that is, a diffusion equation where both spatial and temporal dependencies

appear.

For simplicity, we will focus on a 1D case, although the methodology that we will outline is

applicabile to 2D and 3D cases as well without (almost) any further complication. We will focus on

the unsteady heat equation, although the same method applies to the time-dependent diffusion of any

other variable, e.g. momentum, chemical species, etc.

The unsteady heat conduction equation in 1D takes the following form:

∂(ρcpT)

∂t
=

∂

∂x

(
λ
∂T

∂x

)
+ S(x, t, T), 0 < x < L, t > 0 (1)

where ρ is the density of the material (units: kg/m3) and cp is the constant pressure specific heat

of the material (units: J/(kg ·K)). Now the derivatives are partial derivatives because T = T (x, t),

and therefore Eq. (1) is a PDE. Note that the source term now can be a function of time too. Es-

sentially, Eq. (1) states that the temperature at a specific location in the system will vary in time

if an unbalance between the diffusion and the source term exists; otherwise, if diffusion and source

terms balance out, the temporal derivative will be zero, which means that temperature does not vary

in time and the system has reached steady-state. In diffusion problems, the time-derivative appears

as a first-order derivative, and therefore the governing PDE is classified as a parabolic equation; recall

Sec. 1 of Lecture 1.

We know from Lecture 1 that Eq. (1) needs two spatial boundary conditions (at x = 0 and x = L)

to solve the problem. But what about the temporal boundary conditions, now that time enters the

problem?

The solution of a parabolic equation has a very distinctive behaviour versus time: disturbances

can only travel towards the +t direction, and not backward (−t), i.e. time is a one-way coordinate.

This means that Eq. (1) needs only one temporal boundary condition, which is the temperature field

at the initial time t = 0, T (x, t = 0). As such, the temporal boundary condition is also called initial

condition. From the point of view of the numerical solution, the parabolic behaviour with time allows

us to obtain the temporal evolution of the system using a time marching procedure: starting from an

initial condition at t = 0, where T (x) is known, the solution at any time t > 0 is found by marching

the solution forward, from the time instant t to the next time instant t + ∆t, without any need to

know what happens at any future time instant t > t+∆t.

In brief, the solution procedure for the unsteady diffusion equation proceeds as follows:

� t = 0: We need a known initial condition T (x, t = 0).

� t = 1∆t: We solve the linear system A ·T = B, where A and B contain the information of the

solution at t = 0. The discretisation equation for the unsteady problem (and related system)

will be seen in the next sections. Solution of the system yields T (x, t = 1∆t).

3

2 FINITE-VOLUME METHOD FOR UNSTEADY PDE

� t = 2∆t: T (x, t = 1∆t) is our new initial condition. We solve the linear system A · T = B,

where A and B now contain the information of the solution at t = 1∆t. Solution of the system

yields T (x, t = 2∆t).

� ...t = tfinal: The procedure continues until time reaches the desired end value.

Therefore, there is an important difference from steady-state problems: while in steady problems

we solve the linear system only once, for unsteady problems we must solve the linear system at every

time-step.

Below, we will first show in Sec. 2 how to use the finite-volume method to discretise the 1D heat

conduction equation in both space and time. Then, in Sections 3, 4 and 5, we will see three different

temporal discretisation schemes. Finally, in Section 6, we conclude with a tutorial of the implemen-

tation of these numerical methods in Matlab.

Further reading: Patankar [1], Sec. 2.2.3.

2 Finite-volume method for unsteady PDE

In this section we see how to derive the discretisation for Eq. (1), according to the finite-volume

method; for simplicity, we discard the source term. Since time is a one-way coordinate, we obtain the

solution by marching in time from a given initial distribution of temperature. Thus, at a given time

instant t where we know the values of T at each grid point, we want to find the new values of T at

time t+∆t.

We proceed by integrating Eq. (1), discarding the source term, in both space and time. For an

internal control volume centred in xP , and at a given time instant t, we obtain:

ρcp

∫ t+∆t

t

∫
V

∂T

∂t
dV dt =

∫ t+∆t

t

∫
V

∂

∂x

(
λ
∂T

∂x

)
dV dt, (2)

where for simplicity we are considering that both ρ and cp are constant. Let’s now manipulate the

Figure 1: Generic internal CV and notation used in this document: circles refer to control volume

centroids, denoted as P (central node), E (east neighbour), W (west neighbour); vertical dashed lines

refer to the CV faces, with e and w denoting the locations of the east and west faces of the CV centred

in P ; δx identifies the distance between the CV centres, whereas ∆x = xe−xw is the distance between

the east and west faces, which coincides with the CV width.

4

2 FINITE-VOLUME METHOD FOR UNSTEADY PDE

single terms, starting from the temporal term:

ρcp

∫ t+∆t

t

∫
V

∂T

∂t
dV dt = ρcp

∫ e

w

[∫ t+∆t

t

∂T

∂t
dt

]
Adx = ρcp

∫ e

w
[T]t+∆t

t Adx = ρcp
(
T 1
P − T 0

P

)
A∆x.

(3)

What have we done here? First, we have swapped the order of the integrals and we have replaced dV

with dV = Adx, with the spatial integration limits now becoming the west and east faces of the control

volume, just like we did in the steady case; see Fig. 1 for the notation. Then, in the inner temporal

integral, the dt at the numerator and the ∂t at the denominator cancel out and the integral of the

differential ∂T becomes the function T evaluated at the integration boundaries. We call T (t) ≡ T 0

(old, known value) and T (t+∆t) ≡ T 1 (new, unknown value) and therefore [T]t+∆t
t = T 1−T 0. Finally,

the spatial integral of T 1−T 0 is solved by considering that the temperature within the control volume

can be written in terms of TP , so that
∫ e
w(T

1 − T 0)dx =
(
T 1
P − T 0

P

)
∆x.

For the diffusion term, we follow the steady-state practice:∫ t+∆t

t

∫
V

∂

∂x

(
λ
∂T

∂x

)
dV dt =

∫ t+∆t

t

∫ e

w

(
λ
∂T

∂x

)
Adxdt =

∫ t+∆t

t

[
λe

TE − TP

δxe
− λw

TP − TW

δxw

]
Adt.

(4)

Therefore, the semi-discretised version of Eq. (1) is (A is constant and cancels out):

ρcp
(
T 1
P − T 0

P

)
∆x =

∫ t+∆t

t

[
λe

TE − TP

δxe
− λw

TP − TW

δxw

]
dt, (5)

where we call it “semi-discretised” because we do not know yet how to calculate the temporal integrals

at the right-hand side. In order to integrate, we need to make an assumption of how T (t) varies between

t and t+∆t. In general, we can imagine that the integral of TP (and TW , TE) between t and t+∆t

will be a function of the old value T 0
P and new value T 1

P ; the simplest function that we can use is a

linear function of the kind:∫ t+∆t

t
TPdt =

[
fT 1

P + (1− f)T 0
P

]
∆t, (6)

where f is a weighting factor between 0 and 1 and ∆t is our time-step, which can be intended as a

temporal-mesh size. Depending on the choice of f , we have the following time-discretisation schemes:

� f = 0, explicit scheme. This assumes that TP ≡ T 0
P between t and t + ∆t, as sketched in

Fig. 2, so that
∫ t+∆t
t TPdt = T 0

P∆t. This scheme is first-order accurate and conditionally stable,

as we will see later on.

� f = 1, fully-implicit scheme. This assumes that TP ≡ T 1
P between t and t+∆t, as sketched

in Fig. 2, so that
∫ t+∆t
t TPdt = T 1

P∆t. This scheme is first-order accurate and unconditionally

stable.

� f = 1/2, Crank-Nicolson scheme. This assumes that TP varies linearly from T 0
P to T 1

P

between t and t + ∆t, as sketched in Fig. 2, so that
∫ t+∆t
t TPdt =

[
0.5T 0

P + 0.5T 1
P

]
∆t. This

scheme is second-order accurate and unconditionally stable, but may give rise to oscillations of

the solution (will see in the tutorial).

5

2 FINITE-VOLUME METHOD FOR UNSTEADY PDE

Figure 2: Variation of temperature with time for the three time-discretisation schemes.

Below, we will derive the general discretisation equation by retaining f as a parameter, and we

will treat the implications of the specific choice of time scheme in later sections.

We further develop the right-hand side of Eq. (5) by replacing the temporal integral of TP , TW ,

and TE with the expression in Eq. (6), this yields:

ρcp
(
T 1
P − T 0

P

)
∆x =

=

{
f

[
λe

T 1
E − T 1

P

δxe
− λw

T 1
P − T 1

W

δxw

]
+ (1− f)

[
λe

T 0
E − T 0

P

δxe
− λw

T 0
P − T 0

W

δxw

]}
∆t,

(7)

where the right-hand side includes the contribution of the diffusion term at the new time level (su-

perscripts 1), weighted by f , and that of the old time level (superscripts 0), weighted by (1 − f).

Now, in this equation T 1
W , T 1

P and T 1
E represent the unknowns, whereas T 0

W , T 0
P and T 0

E are the old

temperatures and are known. Therefore, separating the unknown terms on the left-hand side and the

known terms on the right-hand side, and dropping the superscript 1, we obtain:

−f
λw

δxw
TW +

[
ρcp

∆x

∆t
+ f

(
λw

δxw
+

λe

δxe

)]
TP − f

λe

δxe
TE =

= ρcp
∆x

∆t
T 0
P + (1− f)

[
λw

δxw
T 0
W +

λe

δxe
T 0
E −

(
λw

δxw
+

λe

δxe

)
T 0
P

]
, (8)

which can be written in compact form as follows:

aWTW + aPTP + aETE = b, (9)

with the coefficients:

aW = −f
λw

δxw
, aP = ρcp

∆x

∆t
+ f

(
λw

δxw
+

λe

δxe

)
, aE = −f

λe

δxe
, (10)

6

3 EXPLICIT TIME-SCHEME

and source term:

b = ρcp
∆x

∆t
T 0
P + (1− f)

[
λw

δxw
T 0
W +

λe

δxe
T 0
E −

(
λw

δxw
+

λe

δxe

)
T 0
P

]
. (11)

Note that b contains old temperature values T 0, which are the temperatures evaluated at the

previous time instant t. Therefore, as you march the solution in time, these values will need to be

updated after each time-step.

The discretisation equation for 1D unsteady heat conduction, Eq. (9), looks the same as that for

the steady case, the difference is in the coefficients and source term. Note that all the information

about the previous time instant temperatures T 0 enter in the source term, as these are known. You

can imagine that assembling the discretisation equations for the n control volumes of the domain, leads

once again to a linear system A ·T = B, where A is the n× n tridiagonal matrix of the coefficients,

T is the n× 1 vector of unknowns and B is the n× 1 vector of known terms.

However, this time the linear system must be solved at each time step, i.e. for t = ∆t, t =

2∆t, t = 3∆t, and so on until the final time instant desired. At each time instant, T 0 will represent

the solution at the previous time instant, and thus the vector B will need to be updated before solv-

ing the linear system. Things will be more clear with the Matlab tutorials at the end of this document.

The derivation above was done for an internal control volume, but what about boundary control

volumes? If you have Dirichlet conditions at both boundaries, then the discretisation equations for

the boundary control volumes are straightforward and are the same as those for the steady case, see

Sec. 4.4.1 in Lecture 1; the coefficient b does not change during the temporal marching, because the

boundary temperatures Ta and Tb are fixed. If you have Neumann boundary condition (fixed heat

flux) at one boundary, you can easily derive the discretisation equation by integrating Eq. (1) in both

space and time, but referring to a boundary control volume. The procedure to embed the known heat

flux value within the discretised equation is the same as that outlined in Sec. 4.4.2 of Lecture 1, with

the addition of the temporal term. In the case of Neumann conditions, the old boundary temperature

values will enter the coefficient b and this will need to be updated at the end of each time step.

Below, we take a closer look at each of the three time-discretisation methods defined above.

Further reading: Patankar [1], Sec. 4.3.

3 Explicit time-scheme

For the explicit time-scheme, f = 0 and thus:∫ t+∆t

t
TPdt = T 0

P∆t. (12)

This is equivalent to a Taylor expansion of the temperature as a function of time truncated after the

first-order term, thus meaning that the time-explicit scheme has a truncation error of order 1, thus

first-order accuracy with respect to time. If we reduce the time-step by a factor 2, the truncation

error associated with the temporal discretisation reduces by a factor of 21 = 2. Replacing f = 0 in

Eq. (8) leads to the discretisation equation:

7

3 EXPLICIT TIME-SCHEME

aWTW + aPTP + aETE = b, (13)

with coefficients:

aW = 0, aP = ρcp
∆x

∆t
, aE = 0, (14)

and source term:

b =
λw

δxw
T 0
W +

λe

δxe
T 0
E −

(
λw

δxw
+

λe

δxe
− ρcp

∆x

∆t

)
T 0
P . (15)

Note that, since aE and aW are now zero, the matrix of the coefficients will be a diagonal matrix,

i.e. a matrix with only one nonzero diagonal. In such a case, we do not even need to solve a linear

system, but we can simply solve the equations sequentially from control volume 1 to n, because the

equations for each control volume are now decoupled, i.e. they do not depend on the neighbours’

temperature values at the new time instant, but only on the neighbour values at the old time instant,

which are known. This is the main advantage of the time-explicit scheme.

However, the discretisation equation for the time-explicit method is subject to a strict stability

condition. If you remember Lecture 1, Section 4.5, a condition for the stability of the solution procedure

was that the coefficients of the neighbours, when appearing at the left-hand side of the equation, had

to be negative. In the unsteady case, T 0
P represents a neighbour of T 1

P in a temporal sense, and thus

stability requires its coefficient to be negative. Taking a look at Eq. (15), this means that if we take the

term multiplying T 0
P to the left-hand side of the discretisation equation, this term must be negative:(

λw

δxw
+

λe

δxe
− ρcp

∆x

∆t

)
< 0. (16)

Considering, as an example, a situation where λ is constant, and the mesh uniform such that δxe =

δxw = ∆x, the stability condition above imposes the following restriction on the time-step size:

∆t <
ρcp(∆x)2

2λ
. (17)

This represent a very strict condition, because it means that if we refine the mesh by decreasing the

nodes distance by a factor of 2, stability requires that we decrease the time-step by a factor of 4.

In summary, the time-explicit scheme:

� Has the advantage that the equations for each control volume are decoupled, and therefore there

is no need to solve a linear system at each time instant. This makes the algorithm simpler, and

calculations faster.

� It is a first-order scheme, so in order to achieve sufficient accuracy we need a small time-step.

� It is subject to a strong limitation on the time-step, see Eq. (17), which slows down the calculation

of the temporal evolution of the system.

8

4 CRANK-NICOLSON TIME-SCHEME

4 Crank-Nicolson time-scheme

For the Crank-Nicolson time-scheme, f = 1/2 and thus:∫ t+∆t

t
TPdt =

T 1
P + T 0

P

2
∆t. (18)

This is equivalent to a Taylor expansion of the temperature as a function of time truncated after

the second-order term, thus meaning that the Crank-Nicolson scheme has a truncation error of order

2, thus second-order accuracy with respect to time. If we reduce the time-step by a factor 2, the

truncation error associated with the temporal discretisation reduces by a factor of 22 = 4. Replacing

f = 1/2 in Eq. (8) leads to the discretisation equation:

aWTW + aPTP + aETE = b, (19)

with coefficients:

aW = −1

2

λw

δxw
, aP = ρcp

∆x

∆t
+

1

2

(
λw

δxw
+

λe

δxe

)
, aE = −1

2

λe

δxe
, (20)

and source term:

b =
1

2

[
λw

δxw
T 0
W +

λe

δxe
T 0
E −

(
λw

δxw
+

λe

δxe
− 2ρcp

∆x

∆t

)
T 0
P

]
. (21)

You can see that with the Crank-Nicolson scheme aW , aE ̸= 0, which means that the scheme is

partially implicit because there is a dependence of TP on the new temperature values of the neighbours,

and thus a linear system needs to be solved at each time-step.

Owing to the stability condition seen in the previous section, there is still a limitation on the

time-step size:

∆t <
ρcp(∆x)2

λ
, (22)

which only differs from that for a time-explicit scheme by a factor of 2. This is still a strong limitation

on the time-step. However, because of the implicit dependence on the neighbours’ new temperature

values, time-steps above the stability condition will still work. Nonetheless, for large ∆t, the solution

will oscillate a bit, as we will see in the tutorial, which is an undesired effect.

In summary, the Crank-Nicolson scheme:

� Is second-order accurate with respect to time, which makes it the most accurate among the three

schemes seen in this lecture.

� Requires the solution of a linear system at every time-step, which makes it more complicated

than the explicit scheme.

� It is still subject to a quite strong limitation on the time-step size.

9

5 FULLY-IMPLICIT TIME-SCHEME

5 Fully-implicit time-scheme

For the explicit time-scheme, f = 1 and thus:∫ t+∆t

t
TPdt = T 1

P∆t. (23)

This is equivalent to a Taylor expansion of the temperature as a function of time truncated after the

first-order term, thus meaning that the time-explicit scheme has first-order accuracy with respect to

time. Replacing f = 1 in Eq. (8) leads to the discretisation equation:

aWTW + aPTP + aETE = b, (24)

with coefficients:

aW = − λw

δxw
, aP = ρcp

∆x

∆t
+

(
λw

δxw
+

λe

δxe

)
, aE = − λe

δxe
, (25)

and source term:

b = ρcp
∆x

∆t
T 0
P . (26)

Now, from Eq. (26) you can see that the coefficient multiplying T 0
P , when taken to the left-hand

side of the discretisation equation, will be always negative irrespective of the time-step size, this makes

the fully-implicit scheme an unconditionally stable scheme.

In summary, the fully-implicit scheme:

� Is not subjected to any time-step restriction and thus is stable for any size of the time-step.

� Is still first-order accurate with respect to time, and thus less accurate than the Crank-Nicolson

scheme when the same time-step size is used.

� Requires the solution of a linear system at every time-step, which makes it more complicated

than the explicit scheme.

Figure 3: Sketch of the domain and boundary and initial conditions for the tutorials.

10

6 MATLAB TUTORIALS

6 Matlab tutorials: finite-volume solution of the unsteady 1D heat

equation

6.1 Worked example 1: Fully-implicit time-scheme

Implement a FV code in Matlab to solve the unsteady 1D heat conduction equation using a fully-

implicit method, with the following conditions:

� L = 1m.

� Constant thermal conductivity, λ = 400W/(mK), density ρ = 4000 kg/m3, specific heat cp =

400 J/(kgK).

� n = 21 equidistant nodes.

� Dirichlet boundary conditions at both boundaries, T (x = 0) = T (x = L) = Tw = 300K.

� Initial condition T (x, t = 0) = 320K.

� Time-step size ∆t = 100 s.

� End time of the simulation tend = 5000 s.

Compare your solution with the analytical solution:

T (x, t) = Tw +
2(T0 − Tw)

π

∞∑
i=1

[
1− (−1)i

]
i

e−αµ2
i t sin(µix), withµi =

iπ

L
, α =

λ

ρcp
. (27)

Solution

Unlike the steady case, now we need to solve a linear system at each time instant. With ∆t = 100 s

and tend = 5000 s, we have 5000/100 = 50 time-steps and therefore we will have to solve the linear

system 50 times. The cofficient matrix A, see Eq. (25), includes only constants and therefore it will

not change during the time marching procedure. For any internal control volume:

ai,i−1 = − λ

δx
, ai,i = ρcp

∆x

∆t
+ 2

λ

δx
, ai,i+1 = − λ

δx
, (28)

for the first control volume:

a1,1 = 1, a1,2 = 0, (29)

and for the n-th control volume:

an,n−1 = 0, an,n = 1. (30)

The known terms vector B includes old temperature values, see Eq. (26), and therefore will change

at each time instant. Let’s set k = 1 as the iteration corresponding to t = 0. When k = 1, there is

nothing to do, because the temperatures in all the nodes are known as the initial condition T0. For

any generic temporal iteration k > 1, and internal control volume (i = 2, ..., n− 1):

bi = ρcp
∆x

∆t
T k−1
i , (31)

11

6 MATLAB TUTORIALS

where the previous temperature value T k−1
i is known from the previous solution of the linear system;

note that at the time-step corresponding to t = 1∆t, i.e. k = 2 because we set k = 1 as the initial

condition, the old temperature values correspond to the initial condition, T k−1=1
i = T0. The boundary

coefficients b1 = Tw and bn = Tw do not change during the calculation. You can imagine that, in order

to update the values of B, you will now need a for cycle that runs through all the time-steps.

We are now ready to take a look at the Matlab code, see next page. Lines 1-7 should be familiar

from the past exercises. In line 8, you see that I am adding f=1. The definition of f would not be

necessary if I use a fully-implicit method, however I want to write a general code, despite what the

exercise is asking, and make the choice of the time-scheme a parameter to be introduced by the user

via f ; this way, you can use the same code for the next suggested exercises. In line 13, the initial

condition is implemented by writing a column vector of temperatures with n elements, each element

equal to T0. Lines 15-18 initialise the matrices, and set the coefficients of A and B for the boundary

nodes; this is done out of the temporal loop, because the boundary coefficients do not change for

Dirichlet conditions (but they do change for Neumann conditions, although we will not see this).

Next, we start the temporal loop. We take k = 1 as the iteration referring to the initial condition,

therefore our loop will start from k = 2, and because it starts from 2 it will run till k = 51:

12

6 MATLAB TUTORIALS

In line 20, we open a figure where we will display the solution during runtime. You see that,

within the temporal loop, in lines 22-25 there is the loop that updates A and B at each time-step.

The coefficients for A in the general case (no specific time-scheme chosen) are those reported in

Eq. (10); there was no real need to put line 23 within the temporal loop, because A does not change

during the time marching, however I have done this to make the code more compact, otherwise I should

have added an extra for loop before the temporal loop. Line 24 defines B according to Eq. (11). You

see that now the temperature is defined as a matrix. Specifically, it is a matrix where the temperature

values at each time instant will be added as new columns from left to right, so each column (of n

elements) represents the solution at a specific time instant. For example, T(:,1) is the vector of

temperatures at time instant k = 1, which coincides with the initial condition defined in line 13;

T(:,2) is the vector of temperatures at time instant k = 2, and in general T(:,k) is the vector of

temperatures at time instant k. Therefore, at the end of the entire temporal loop, all the transient

values of the temperature in the domain will be stored in a matrix that has n rows and 51 columns

(one for each time instant). So, in line 24, T(i+1,k-1) represents T 0
E , T(i,k-1) is T 0

P and T(i-1,k-1)

is T 0
W . Storing all the temperature values for each time instant in a matrix has two advantages: (i)

we retain all the transient solutions so that we can plot them at the end of the calculation; (ii) we

can quickly retrieve the temperature values of the old time-step (superscript 0) by simply using k-1

as second index, without the need to define a new vector of old temperature values. In line 26, the

linear system is solved using Matlab’s backslash operator, but feel free to use another self-developed

method from Lecture 2. Line 27 plots the solution and line 28 is a precious command that tells matlab

to plot the solution during runtime. Once the temporal loop is done, line 29, we have available T

as a matrix with a number of rows coinciding with the number of control volumes, and a number of

columns coinciding with the number of time-steps.

Lines 30-39 process the results to compare with the analytical solution in Eq. (27). My intention

is to plot T (x = L/2, t), the temperature at the domain centre versus time. First, in line 31 we define

the index I that locates the index of the control volume at the centre of the domain. We use the

floor function, which returns the closest integer to its argument towards minus infinity, because we

want I to be an integer, as we will use it in line 32 as an index to extract data from the matrix T. In

order to have a smooth theoretical solution, we define a new temporal vector with steps of 1 s in line

34. The analytical solution involves an infinite sum of terms, here we account for the first 1000 terms

of the sum, using the cycle of line 35-37. Lines 35-38 evaluate the analytical solution versus time at

x = L/2, and compare it with the numerical solution in line 39. The figure output is shown in Fig. 4.

6.2 Suggested exercises

1. Repeat Worked example 1, but now using the explicit scheme. You will have to reduce the

time-step to make sure you respect the restriction in Eq. (17). Try time-steps that are below,

equal to, and above the limit, to see how the solution evolves with time. You will see that when

∆t is above the threshold for stability, your solution will oscillate and after a few time-steps will

shoot out of the figure boundaries.

13

REFERENCES

Figure 4: Temperature at x = L/2 versus time for worked example 1.

2. Repeat Worked example 1, but now using the Crank-Nicolson scheme. Try time-steps that are

below, equal to, and above the limit in Eq. (22), to see how the solution evolves with time.

You will notice that the Crank-Nicolson scheme tolerates time-steps above the threshold for

stability, because of the implicit contributions to aW and aE , however for very large time-steps

the solution will becomes oscillatory.

3. Repeat Worked example 1, for different, smaller values of the time step ∆t, down to what

your computer can achieve. The time- implicit scheme has first-order accuracy with respect to

time, and therefore the deviation between the numerical and theoretical solutions, calculated

for example in the centre of the domain x = L/2 at a time t = 1000 s (when the solution has

not yet reached steady-state), should decrease with order 1 as ∆t is decreased. Note that there

exists also the error related to the spatial discretisation. This error may be quite large when

n is small, and thus “mask” the error related to the temporal discretisation. In order to rule

out the spatial discretisation error, you should perform all the tests with a large value of n, for

example n = 1001. This way, we can assume that the spatial discretisation error is negligible

and the dominant error component in our numerical solution is that related to the temporal

discetisation.

References

[1] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing, New York,

1980. NUsearch; Download(may not work).

14

https://nusearch.nottingham.ac.uk/permalink/f/gq7rlv/44NOTUK_ALMA2172538080005561
https://catatanstudi.files.wordpress.com/2010/02/numerical-heat-transfer-and-fluid-flow.pdf

	Introduction
	Finite-volume method for unsteady PDE
	Explicit time-scheme
	Crank-Nicolson time-scheme
	Fully-implicit time-scheme
	Matlab tutorials
	Worked example 1: Fully-implicit time-scheme
	Suggested exercises

