--- author: Akbar Rahman date: \today title: MMME2051 // Piezoelectrics tags: [ piezoelectrics, op_amps ] uuid: ed7d0899-478d-4f0d-b0e9-634cdbb5b48a lecture_slides: [ ./lecture_slides/MMME2051EMD_Lecture7.pdf ] lecture_notes: [] exercise_sheets: [ ./seminar_worksheets/MMME2051_Lec7_Top1_Quiz.pdf, ./seminar_worksheets/StrainGaugeHomework.pdf ] --- Piezoelectricity is the charge that gets accumulated in some materials upon application of mechanical stress $$Q \propto F$$ This relation allows the measurement of force using electric signals. ![](./images/vimscrot-2023-03-16T11:15:41,326771312+00:00.png) \begin{align*} Q &\propto F \\ Q &= k_1F \\ &= k_1Ma \\ \frac{\mathrm d Q}{\mathrm dt} &= i = k_1M\frac{\mathrm da}{\mathrm dt} \end{align*} # Integrating Amplifier Measuring current is expensive and difficult. Integrating the current helps to measure a voltage instead, which is easier. This is done using the following amplifier: ![](./images/vimscrot-2023-03-16T11:22:04,554599428+00:00.png) \begin{align*} V_\text{out} &= A_{OL}(V^+-V_{-}) = -A_{OL}V_{-} \\ V_{-} &= V_\text{out} - V_C \end{align*} As input resistance of op amp is infinite: $$i_f = -i_n = -k_1M\frac{\mathrm da}{\mathrm dt}$$ From the capacitor equation: $$i_f = C_f \frac{\mathrm dV_C}{\mathrm dt} = -k_1M\frac{\mathrm da}{\mathrm dt}$$ Integrating both sides gives $$V_C = -\frac{k_1M}{C_f}a$$ And it can be found that \begin{align*} V_\text{out} &= -A_{OL}(V_\text{out} - V_C) \\ V_C &= -V\text{out} \frac{1+A_\text{OL}}{A_{OL}} \end{align*} To get $$V_\text{out} = \frac{k_1M}{C_f}a$$ This circuit can be stacked to get velocity and displacement: ![](./images/vimscrot-2023-03-16T11:28:48,428685773+00:00.png)