
Computer Modelling Techniques

MMME3086 UNUK, 2023/24

Numerical Methods: Roots of equations

Author: Mirco Magnini

Office: Coates B100a

Email: mirco.magnini@nottingham.ac.uk

CONTENTS

Contents

1 Introduction 3

2 The Newton-Raphson method 3

2.1 Outline of the method . 4

2.2 Pitfalls of the method . 7

3 The Newton-Raphson method for two nonlinear equations 8

4 The Newton-Raphson method for a system of nonlinear equations 11

5 Matlab tutorials 12

5.1 Worked example 1: Newton-Raphson method to solve one equation 12

5.2 Worked example 2: Newton-Raphson method to solve a system of two nonlinear equations 13

5.3 Suggested exercises . 14

2

2 THE NEWTON-RAPHSON METHOD

1 Introduction

At high school, you have probably learned how to find the roots of second-order polynomials such as

f(x) = ax2 + bx+ c, using the formula:

x =
−b±

√
b2 − 4ac

2a
. (1)

In the engineering practice, you may encounter equations far more complicated than Eq. (1) above,

be them higher-order polynomials or equations including trigonometric, exponential, logarithmic, and

other, less familiar, functions. It is not always possible to derive an analytical solution for such complex

equations, and therefore it is useful to utilise numerical methods to find the roots of these equations.

This lecture will present some powerful techniques to find roots of equations. In Section 2, we will

start with presenting the Newton-Raphson method to find the roots of an equation with one unknown,

f(x) = 0. Then, Section 3 will show you how to extend the method to a system of two equations

with two unknowns; the two equations will be nonlinear, because in the case of a system of linear

equations, the direct and iterative methods learned in Lecture 2 will be sufficient. Section 4 will extend

the method to solve a system of n nonlinear equations with n unknowns. In the final Section 5, we will

see how to implement the Newton-Raphson method in Matlab to solve the two examples proposed in

these notes.

2 The Newton-Raphson method

We want to find the solution of the generic equation f(x) = 0. In general, equations in mathematics

can be always recast in the form f(x) = 0, for example:

x4 = 5 ⇒ f(x) = x4 − 5 = 0, (2)

or:

e−x = x ⇒ f(x) = e−x − x = 0. (3)

Solving the equation means finding the root(s) of the equation. There exist many methods to find

roots of an equation. These can be classified into bracketing methods and open methods:

� Bracketing methods exploit the fact that a function typically changes sign in the vicinity of

a root. Two initial guesses for the root are required and these guesses must be located on each

side of the root, so that the function takes opposite signs when evaluated at the two guesses.

The root is then searched within this interval, which is iteratively narrowed down, but remaining

always “bracketed” between two values where the function changes sign. These methods always

converge to the correct root. Further reading: Chapra and Canale [1], Ch. 5.

� Open methods are based on formulas that require only a single starting value of x, or two

starting values that do not necessarily bracket the root. As such, they sometimes diverge or move

away from the true root as the computation progresses. However, when open methods converge,

3

2 THE NEWTON-RAPHSON METHOD

Figure 1: Schematic representation of the Newton-Raphson method, with the red curve representing

f(x) and the red dot representing a root of f(x) = 0. At a generic iteration i, where the guess value is

xi, the new guess value is obtained by extending the tangent line at xi until it crosses zero, and then

setting xi+1 to the abscissa of the zero crossing. As iterations continue, the procedure identified with

the blue arrows should converge towards the correct solution.

they usually do so much more quickly than the bracketing methods. Further reading: Chapra

and Canale [1], Ch. 6.

The Newton-Raphson method belongs to the family of open methods, and it is the most widely

used numerical method to find the solution of nonlinear equations. The method works by using an

initial guess or a trial solution, and then successively improving it by using iterations based on the

slope (gradient) of the curve. To ensure convergence, the initial guess must be a reasonable one and

must not be too far away from the exact solution. The curve is effectively approximated by a series

of suitable tangents.

2.1 Outline of the method

Figure 1 shows a schematic representation of how the Newton-Raphson method can be used to arrive

at the exact solution starting from an initial guess. At a generic iteration i, where the guess value is

xi, the new guess value is obtained by extending the tangent line at xi until it crosses zero, and then

setting xi+1 to the abscissa of the zero crossing. The iteration equation to find xi+1 is obtained by

considering the first-order Taylor expansion of f(x) near the previous guess value xi:

fT (x) = f(xi) + (x− xi)f
′(xi), (4)

where the fT (x) (“T” for Taylor or tangent) above is a linear function of x and represents the equation

of the tangent line passing by xi, and therefore can be seen as one of the blue tangent segments in

Fig. 1. This line crosses zero at some point where fT (x) = 0, which identifies the abscissa xi+1:

0 = fT (xi+1) = f(xi) + (xi+1 − xi)f
′(xi). (5)

4

2 THE NEWTON-RAPHSON METHOD

and, rearranging:

xi+1 = xi −
f(xi)

f ′(xi)
, (6)

which is the iteration equation of the Newton-Raphson method.

Example. Consider the equation:

f(x) = e−x − x = 0, (7)

which is plotted in Fig. 4. Note that the function values span 4 orders of magnitude, from f(x) ≈ 104

when x = −10, to f(x) = −10 when x = 10. Let’s apply the Newton-Raphson method to find the

root of the function. The derivative of f(x) is:

f ′(x) = −e−x − 1, (8)

Therefore, according to Eq. (6), the equation to use to find a new guess is:

xi+1 = xi −
e−xi − xi
−e−xi − 1

. (9)

If we take the initial guess x0 = 0, the next guess will be:

x1 = 0− e0 − 0

−e0 − 1
= 0− 1− 0

−1− 1
= 0.5. (10)

If we continue, we will eventually converge to the solution, which is x = 0.56714. This can be

done implementing a simple matlab code. Figure 3 shows the sequential values of the guesses as the

iterations proceed, for three different values of the initial guess, x0 = 0, x0 = 10 and x0 = −10. As

a criterion to arrest the iterative procedure, we look at error, defined as |f(xi)|; intuitively, it makes

sense that the error is the difference between the value of the function calculated at xi, and zero; as

Figure 2: Plot of the function f(x) = e−x − x; the inset shows a close-up view of the function near

the root x = 0.56714.

5

2 THE NEWTON-RAPHSON METHOD

Figure 3: Convergence of the solution for different values of the initial guess x0.

(a) (b)

Figure 4: (a) Convergence of the solution for different values of the initial guess x0, and (b) convergence

of the error, calculated as |f(xi)| = |e−xi − xi|. The iterative procedure is arrested when the error

falls below the tolerance, set to tol = 10−8.

a tolerance value, we choose tol = 10−8. The sequential values of the guesses and the corresponding

errors are reported in Fig. 4. It can be seen that x0 = 0 provides the fastest convergence, with

4 iterations being sufficient. The solution is achieved quickly also when starting with x0 = 10 (5

iterations), whereas it takes 13 iterations to converge when x0 = −10. The reason can be readily

understood by looking at Fig. 3. When x0 = −10, f(x0) is very far from zero, and thus it takes many

steps to get there. When x0 = 10, f(x0) is much closer to zero and, furthermore, the behavior of

6

2 THE NEWTON-RAPHSON METHOD

f(x) is almost linear between x0 = 10 and the correct solution x = 0.56714, therefore after only one

iteration (see Fig. 3) the guess is already very close to the final solution. The error convergence history

reported in Fig. 4(b) emphasise another specific feature of the Newton-Raphson method. Once that

the guess is sufficiently close to the actual solution, convergence accelerates and the error decreases at a

faster rate; you see this in particular for x0 = −10: when the error becomes below 1, the error reduces

at a faster rate as iterations continue. This happens because it can be demonstrated that, with the

Newton-Raphson method, when xi is near a root the error at the next iteration ei+1 is proportional

to e2i ; this means that if at iteration i the error is ei = 0.1, at the next iteration the error will be

ei+1 = 0.01, and then ei+2 = 0.0001 and so on, i.e. the error reduces at an increasing rate. Further

reading about this: Press et al., Sec. 9.4.

The first tutorial exercise at the end of this document will show how to solve this example using

Matlab.

2.2 Pitfalls of the method

The pitfalls of the Newton-Raphson are:

1. The initial guess has to be “sufficiently” close to the root.

2. Convergence depends on the nature of the function, and in particular its derivative, see the four

cases displayed in Fig. 5. Nearby an inflection point (Fig. 5(a)), where f ′′ = 0, the method actu-

ally gets further from the solution, and eventually diverges. Nearby a maximum or a minimum,

iterations may oscillate (Fig. 5(b)) and eventually shoot out if the guess hits the point of zero

derivative (Fig. 5(d)). If multiple solutions are present in the correspondence of a maximum or

a minimum, the guess jumps to another root (Fig. 5(c)).

3. No bracketing is done, and hence divergence may occur.

4. Convergence is not guaranteed.

5. Needs knowledge of the first derivative.

The remedies to these issues are:

� Always set a max number of iterations to avoid entering an infinite loop.

� Check that the solution is converging during the iterative procedure, plotting |f(xi)| during
runtime.

� Code your algorithm to output a warning message if the guess shoots out.

� If the derivative f ′ does not have an analytical expression, calculate the derivative using two

successive values of the function. This turns the Newton-Raphson method into the secant

method. Further reading: Chapra and Canale [1], Sec. 6.3.

� To avoid that the guess shoots out, first run a bracketing method to narrow down the search in-

terval, and then use an open method once you are close to the solution, as open methods are much

7

3 THE NEWTON-RAPHSON METHOD FOR TWO NONLINEAR EQUATIONS

faster once the solution is approached. This turns the Newton-Raphson method into the Brent

method. Further reading: Chapra and Canale [1], Sec. 6.4. This is the method use by Matlab.

Try typing in your command window: fzero(@(x) exp(-x)-x,0,optimset(’DISP’,’ITER’)),

and look at the output. Use doc fzero to see how the function works.

Further reading about the Newton-Raphson method: Chapra and Canale [1], Sec. 6.2.

3 The Newton-Raphson method for two nonlinear equations

Consider now that you have two equations with two unknowns to be solved simultaneously:

u(x, y) = 0, v(x, y) = 0. (11)

Figure 5: Four cases where the Newton-Raphson method exhibits poor convergence: (a) an inflection

point, (b) a maximum/minimum, (c) multiple solutions, (d) a zero derivative. Source: Chapra and

Canale [1].

8

3 THE NEWTON-RAPHSON METHOD FOR TWO NONLINEAR EQUATIONS

If the two equations are linear, they form a linear system of two equations with two variables, that

can be solved with the methods described in Lecture 2. Therefore, in this lecture we consider the case

that the two equations are nonlinear, in which case the methods of Lecture 2 do not apply.

To solve a nonlinear system of two equations, we can use the Newton-Raphson method extended

to two dimensions. As done for the one-dimensional case in the previous section, we start from the

guess point (xi, yi) and we want to find the next guess point (xi+1, yi+1). We write the first-order

Taylor expansion of both u(x, y) and v(x, y) near (xi, yi):

uT (x, y) = u(xi, yi) + (x− xi)
∂u

∂x
(xi, yi) + (y − yi)

∂u

∂y
(xi, yi), (12a)

vT (x, y) = v(xi, yi) + (x− xi)
∂v

∂x
(xi, yi) + (y − yi)

∂v

∂y
(xi, yi), (12b)

and we use these to express uT (xi+1, yi+1) and vT (xi+1, yi+1):

uT (xi+1, yi+1) = u(xi, yi) + (xi+1 − xi)
∂u

∂x
(xi, yi) + (yi+1 − yi)

∂u

∂y
(xi, yi), (13a)

vT (xi+1, yi+1) = v(xi, yi) + (xi+1 − xi)
∂v

∂x
(xi, yi) + (yi+1 − yi)

∂v

∂y
(xi, yi), (13b)

here rewritten using a more compact notation:

uT,i+1 = ui + (xi+1 − xi)
∂u

∂x

∣∣∣∣
i

+ (yi+1 − yi)
∂u

∂y

∣∣∣∣
i

, (14a)

vT,i+1 = vi + (xi+1 − xi)
∂v

∂x

∣∣∣∣
i

+ (yi+1 − yi)
∂v

∂y

∣∣∣∣
i

, (14b)

where the vertical bar on the right of the derivatives means “evaluated at”, and i stands for (xi, yi).

We know that, as it is specific to the Newton-Raphson method, we want (xi+1, yi+1) to be a point

where uT,i+1 = 0 and vT,i+1 = 0. Rearranging Eq. (14), with uT,i+1 = 0 and vT,i+1 = 0, we obtain:

xi+1

∂u

∂x

∣∣∣∣
i

+ yi+1

∂u

∂y

∣∣∣∣
i

= −ui + xi
∂u

∂x

∣∣∣∣
i

+ yi
∂u

∂y

∣∣∣∣
i

, (15a)

xi+1

∂v

∂x

∣∣∣∣
i

+ yi+1

∂v

∂y

∣∣∣∣
i

= −vi + xi
∂v

∂x

∣∣∣∣
i

+ yi
∂v

∂y

∣∣∣∣
i

, (15b)

which represents a linear system with two equations and two unknowns, xi+1 and yi+1, whereas all

the other terms are known. This can be rewritten in matricial form as:
∂u

∂x

∣∣∣∣
i

∂u

∂y

∣∣∣∣
i

∂v

∂x

∣∣∣∣
i

∂v

∂y

∣∣∣∣
i

 ·

[
xi+1

yi+1

]
= −

[
ui

vi

]
+


∂u

∂x

∣∣∣∣
i

∂u

∂y

∣∣∣∣
i

∂v

∂x

∣∣∣∣
i

∂v

∂y

∣∣∣∣
i

 , ·

[
xi

yi

]
,

where:

Ji =


∂u

∂x

∣∣∣∣
i

∂u

∂y

∣∣∣∣
i

∂v

∂x

∣∣∣∣
i

∂v

∂y

∣∣∣∣
i

 ,

9

3 THE NEWTON-RAPHSON METHOD FOR TWO NONLINEAR EQUATIONS

is called Jacobian matrix, that is, a matrix containing all the first-order partial derivatives of a

vector-valued function in several variables, and:

Fi =

[
ui

vi

]
,

is the vector containing the known function evaluations at (xi, yi). In matricial notation, the linear

system of two equations Eq. (15) can be written as:

Ji · xi+1 = −Fi + Ji · xi, (16)

where xi+1 is a vector including the new guess values, which are unknown, and xi is a vector including

the previous guess values. Equation (16) is the iteration equation of the Newton-Raphson method in

more than one dimension, which can be used to find the new guess values xi+1. Note that Eq. (16)

represents a linear system of equations, just as those that we were used to see in the previous lectures

as A · x = B; now, the matrix of the coefficients is replaced by the Jacobian matrix J, and the vector

of known terms B is replaced by the expression −Fi + Ji · xi, which is known. Therefore, Eq. (16)

can be solved with any of the direct or iterative methods outlined in Lecture 2. Note that, unlike

Lecture 2, the solution of the linear system Eq. (16) does not provide the final, converged solution

for x satisfying the initial system of nonlinear equations, but it provides only the new guess vector

xi+1 to carry on the iterative procedure towards a converged solution. Therefore, the linear system

Eq. (16) must be solved many times during the iterative procedure for the solution, and each time Ji,

Fi and xi must be updated according to the new guess values. This will become more clear after the

second tutorial exercise.

In the present case of two equations and two variables, we can express the iteration equation via

the Cramer’s rule or by employing algebraic manipulations of Eq. (15):

xi+1 = xi −
ui
∂v

∂y

∣∣∣∣
i

− vi
∂u

∂y

∣∣∣∣
i

det(Ji)
, yi+1 = yi −

vi
∂u

∂x

∣∣∣∣
i

− ui
∂v

∂x

∣∣∣∣
i

det(Ji)
, (17)

with:

det(Ji) =
∂u

∂x

∣∣∣∣
i

·
∂v

∂y

∣∣∣∣
i

−
∂u

∂y

∣∣∣∣
i

·
∂v

∂x

∣∣∣∣
i

. (18)

Example. Consider the system of two nonlinear equations:

u(x, y) = x2 + xy − 10 = 0, v(x, y) = y + 3xy2 − 57 = 0, (19)

which has exact solution x = 2 and y = 3. From the start guesses x0 = 1.5 and y0 = 3.5, use the

Newton-Raphson method to calculate the next guesses.

10

4 THE NEWTON-RAPHSON METHOD FOR A SYSTEM OF NONLINEAR EQUATIONS

We start off with evaluating the elements of the Jacobian:

∂u

∂x

∣∣∣∣
0

= 2x0 + y0 = 6.5, (20a)

∂u

∂y

∣∣∣∣
0

= x0 = 1.5, (20b)

∂v

∂x

∣∣∣∣
0

= 3y20 = 36.75, (20c)

∂v

∂y

∣∣∣∣
0

= 1 + 6x0y0 = 32.5, (20d)

and its determinant:

det(J0) =
∂u

∂x

∣∣∣∣
0

·
∂v

∂y

∣∣∣∣
0

−
∂u

∂y

∣∣∣∣
0

·
∂v

∂x

∣∣∣∣
0

= 156.125. (21)

Next, we calculate the values of the functions at the initial guesses:

u(x0, y0) = x20 + x0y0 − 10 = −2.5, v(x0, y0) = y0 + 3x0y
2
0 − 57 = 1.625. (22)

We have now all the ingredients to apply the iteration equation Eq. (17):

x1 = x0 −
u0

∂v

∂y

∣∣∣∣
0

− v0
∂u

∂y

∣∣∣∣
0

det(J0)
= 2.03603, y1 = y0 −

v0
∂u

∂x

∣∣∣∣
0

− u0
∂v

∂x

∣∣∣∣
0

det(J0)
= 2.84388, (23)

which is our first step towards a converged solution. With two equations, the error can be calculated

as ei = |ui|+ |vi|.
The second tutorial at the end of this document shows how to implement in Matlab the code to

solve this exercise till convergence.

Further reading: Chapra and Canale [1], Sec. 6.6.2.

4 The Newton-Raphson method for a system of nonlinear equations

We are now ready to extend the Newton-Raphson method to the case of a system of n nonlinear

equations:

f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,
...

fn(x1, x2, . . . , xn) = 0,

The generalisation of the method to n dimensions has already been seen in the previous section,

Eq. (16). The new guess vector xi+1 is found by solving the following linear system:

Ji · xi+1 = −Fi + Ji · xi, (24)

written here in extended notation:

11

5 MATLAB TUTORIALS

∂f1

∂x1

∣∣∣∣
i

∂f1

∂x2

∣∣∣∣
i

· · ·
∂f1

∂xn

∣∣∣∣
i

∂f2

∂x1

∣∣∣∣
i

∂f2

∂x2

∣∣∣∣
i

· · ·
∂f2

∂xn

∣∣∣∣
i

...
...

...
...

∂fn

∂x1

∣∣∣∣
i

∂fn

∂x2

∣∣∣∣
i

· · ·
∂fn

∂xn

∣∣∣∣
i


·


x1,i+1

x2,i+1

...

xn,i+1

 = −


f1,i

f2,i
...

fn,i

+



∂f1

∂x1

∣∣∣∣
i

∂f1

∂x2

∣∣∣∣
i

· · ·
∂f1

∂xn

∣∣∣∣
i

∂f2

∂x1

∣∣∣∣
i

∂f2

∂x2

∣∣∣∣
i

· · ·
∂f2

∂xn

∣∣∣∣
i

...
...

...
...

∂fn

∂x1

∣∣∣∣
i

∂fn

∂x2

∣∣∣∣
i

· · ·
∂fn

∂xn

∣∣∣∣
i


·


x1,i

x2,i
...

xn,i

 .

The linear system above must be solved at each i−th iteration, in order to obtain the new guess

values at xi+1. In summary, the solution of a nonlinear system of equations using the Newton-Raphson

method, is turned into an iterative procedure where, at each iteration, we must solve a linear system

of equations to update the solution guesses, till convergence is achieved. Convergence is achieved

when all the f1, f2, . . . , fn functions are zero, or below a set tolerance, which can be expressed as the

condition that the error ei = |Fi| < tol. Further reading: Chapra and Canale [1], Sec. 6.6.

5 Matlab tutorials: Newton-Raphson method

5.1 Worked example 1: Newton-Raphson method to solve one equation

Implement the Newton-Raphson method in Matlab to solve the example in Sec. 2.1, starting with the

initial guess x0 = 0, till convergence. For convergence, consider the error evaluated at each iteration

as ei = |f(xi)|, and take 10−8 as the tolerance.

The code is fairly simple, it is reported below without any further comments other than those in

the matlab code. The output of the code is displayed in Fig. 6.

12

5 MATLAB TUTORIALS

(a) (b)

Figure 6: (a) Convergence of the solution for initial guess x0 = 0, and (b) convergence of the error,

calculated as |f(xi)| = |e−xi − xi|. The iterative procedure is arrested when the error falls below the

tolerance, set to tol = 10−8.

5.2 Worked example 2: Newton-Raphson method to solve a system of two non-

linear equations

Implement the Newton-Raphson method in Matlab to solve the example in Sec. 3, starting with initial

guesses x0 = 1.5 and y0 = 3.5, till convergence. For convergence, consider the error evaluated at each

iteration as ei = |Fi|, and take 10−8 as the tolerance. The code is reported in the next page, without

any further comments other than those in the matlab code. The output of the code is in Fig. 7.

(a) (b)

Figure 7: (a) Convergence of the solution for initial guesses x0 = 1.5 and y0 = 3.5, and (b) convergence

of the error, calculated as ei = |Fi| = |ui| + |vi|. The iterative procedure is arrested when the error

falls below the tolerance, set to tol = 10−8.

13

5 MATLAB TUTORIALS

5.3 Suggested exercises

1. Let’s extend the previous worked example to solve a system of three nonlinear equations:

x2 + yz = 3, (25a)

2xy + y + z2 = 0, (25b)

xyz = 1. (25c)

Select appropriate starting guess and other parameters for the solution procedure. For the

procedure, refer to Sec. 4. An example of solution is shown in Fig. 8. After 16 iterations, I

obtain: x = 1.5321, y = −0.4715 and z = −1.3843.

2. Let’s now show that the Newton-Raphson method can be used also to solve more applied prob-

lems. Let’s consider a one-dimensional steady-state heat conduction problem such as those

14

5 MATLAB TUTORIALS

(a) (b)

Figure 8: Suggested exercise 1. (a) Convergence of the solution when setting all initial guess to 1,

and (b) convergence of the error. The iterative procedure is arrested when the error falls below the

tolerance, set to tol = 10−8.

encountered in Lecture 1, but this time we consider a thermal conductivity that varies with

temperature in linear way: λ(T) = λ0(1 + γT), with T measured in Kelvin degrees. All met-

als have a significant variation of λ with T . For example, copper has λ0 = 500W/(mK) with

γ = −0.00085 1/K, which means that every 10K the thermal conductivity decreases by about

0.85%. Neglecting the source term, the ODE governing this problem is the usual one:

d

dx

(
λ(T)

dT

dx

)
= 0. (26)

This equation is now non-linear, because the derivative of T multiplies a function of T . The

finite-volume integration can still be applied, but will not eventually lead to a system of linear

equations. However, the resulting system of nonlinear equations can be eventually solved using

the Newton-Raphson method.

We begin with integrating the equation above using the finite-volume method for an internal

control volume, and the same procedure as Lecture 1 leads to:

− λw

δxw
TW +

(
λw

δxw
+

λe

δxe

)
TP − λe

δxe
TE = 0. (27)

Now we need to be careful, because λe and λw are both a function of the temperature:

λe = λ0(1 + γTe) = λ0

(
1 + γ

TE + TP

2

)
, (28)

and:

λw = λ0(1 + γTw) = λ0

(
1 + γ

TP + TW

2

)
, (29)

where the temperature at the control volume faces is evaluated as average of the temperatures at

the neighbour centres; if faces are mid-way between the centres, as we always assumed in Lecture

15

5 MATLAB TUTORIALS

1, the operation is correct. Substituting the expressions above in Eq. (27) and rearranging, we

obtain a nonlinear algebraic equation:

−(a+ bTW)TW + 2(a+ bTP)TP − (a+ bTE)TE = 0, a =
λ0

δx
, b =

γλ0

2δx
, (30)

where now we have assumed that the nodes of the grid are all equidistant, with distance δx. The

equation above is now a nonlinear algebraic equation, which is valid for every internal node.

Let’s now consider that we want to solve the problem with Dirichlet boundary conditions T (x =

0) = Ta and T (x = L) = Tb, and 5 control volumes, 3 of which internal. Our unknowns are

the temperatures at the control volume centres, T1, T2, T3, T4, T5. Using the Dirichlet boundary

conditions for T1 and T5, and the discretisation Eq. (30) for T2, T3, T4, we have the system of 5

nonlinear equations to solve:

T1 = Ta → T1 − Ta = 0, (31a)

−(a+ bT1)T1 + 2(a+ bT2)T2 − (a+ bT3)T3 = 0, (31b)

−(a+ bT2)T2 + 2(a+ bT3)T3 − (a+ bT4)T4 = 0, (31c)

−(a+ bT3)T3 + 2(a+ bT4)T4 − (a+ bT5)T5 = 0, (31d)

T5 = Tb → T5 − Tb = 0. (31e)

This system is equivalent to the system of 3 equations seen in suggested exercise 1, and can be

solved iteratively using the Newton-Raphson method, following the procedure outlined in Sec. 4.

The iteration equation will be: Ji · xi+1 = −Fi + Ji · xi, where xi = (T1, T2, T3, T4, T5)i, i.e. the

vector of the 5 unknowns at iteration i. At each iteration, the Jacobian of the system is:

Ji =



1 0 0 0 0

−a− 2bT1 2a+ 4bT2 −a− 2bT3 0 0

0 −a− 2bT2 2a+ 4bT3 −a− 2bT4 0

0 0 −a− 2bT3 2a+ 4bT4 −a− 2bT5 0

0 0 0 0 1


where all the values of the temperature refer to iteration i and thus must be recalculated at each

iteration, as done in Worked example 2. The vector of known function evaluations at iteration

i will be given by the system of equations above:

Fi =



T1 − Ta

−(a+ bT1)T1 + 2(a+ bT2)T2 − (a+ bT3)T3

−(a+ bT2)T2 + 2(a+ bT3)T3 − (a+ bT4)T4

−(a+ bT3)T3 + 2(a+ bT4)T4 − (a+ bT5)T5

T5 − Tb


where all the values of the temperature refer to iteration i and thus must be recalculated at

each iteration. The problem can then be solve iteratively and, once converged, we will obtain

the values of temperature at the nodes. We have thus solved a system of nonlinear equations

16

REFERENCES

Figure 9: Suggested exercise 4. Numerical and theoretical temperature field.

representing a heat conduction problem with temperature-varying thermal conductivity.

You can try solving this exercise with the following parameters: Ta = 300K, Tb = 600K,

L = 1m, λ0 = 500W/(mK), γ = −0.00085 1/K, and n = 5 nodes. The algorithm will be the

same as that for Worked example 2 or suggested exercise 1, being careful in redefining all the

vectors and matrices. Figure 9 shows a plot of the expected solution, obtained using an initial

guess vector x0 = (T1, T2, T3, T4, T5)0 = (Ta, Ta, Ta, Ta, Ta) and a tolerance of 10−12; the solution

converges after 21 iterations. This problem has the following analytical solution:

T (x) = −1

γ
−

√
1

γ2
− 2λm

γλ0

x

L
(Ta − Tb) + T 2

a +
2

γ
Ta, λm = λ0

(
1 + γ

Ta + Tb

2

)
, (32)

which is the black curve in Fig. 9. Note that, if γ > 0, the minus sign before the square root in

the analytical solution becomes a plus sign. You can see that the temperature profile in Fig. 9

is no longer linear, owing to the thermal conductivity not being a constant.

References

[1] S. C. Chapra and R. P. Canale. Numerical Methods for Engineers, 7th edition. McGraw-Hill

Education, New York, USA, 2015. NUsearch; Download(may not work).

17

https://nusearch.nottingham.ac.uk/permalink/f/11rbvif/44NOTUK_ALMA21106792720005561
http://www.civilittee-hu.com/uploads/1/numerical/book6th.pdf

	Introduction
	The Newton-Raphson method
	Outline of the method
	Pitfalls of the method

	The Newton-Raphson method for two nonlinear equations
	The Newton-Raphson method for a system of nonlinear equations
	Matlab tutorials
	Worked example 1: Newton-Raphson method to solve one equation
	Worked example 2: Newton-Raphson method to solve a system of two nonlinear equations
	Suggested exercises

