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1. An unrestrained steel bar of length 80 mm is heated from 20 °C to 50 °C, determine 
the change in length of the bar.  𝛼 = 11 × 10-6 °C-1 for steel. 
[Ans.: 0.0264 mm] 
 

The free thermal extension of a bar is given by 𝛿𝑙௧௛௘௠௔௟ = 𝑙𝛼𝛥𝑇, therefore for 
the bar in question, this can be determined as: 

𝛿𝑙 = 𝑙𝛼𝛥𝑇 = (80 × 10ିଷ) × (11 × 10ି଺) × (50 − 20)) = 2.64 × 10^ − 5 m

= 0.0264 mm 
 

2. If the bar in Q1 has a Young’s modulus of 200 GPa and is restrained from expanding 
axially, determine the stress in the bar. 
[Ans.: -66 MPa] 
 

For combined thermal and mechanical loading, the total change in length in a 
uniaxial bar can be determined using: 

𝛿𝑙௧௢௧௔௟ = 𝛿𝑙௧௛௘௥௠௔ + 𝛿𝑙௠௘௖௛௔௡௜௖௔௟ = 𝑙𝛼𝛥𝑇 +
𝐹𝑙

𝐴𝐸
 

In this case, the overall extension 𝛿𝑙௧௢௧௔௟ = 0 due to the restraint, therefore the 
stress in the bar can be determined using: 
𝐹

𝐴
= −

𝑙𝛼𝛥𝑇𝐴𝐸

𝑙𝐴
= −𝛼𝛥𝑇𝐸 = (11 × 10ି଺) × 30 × (200 × 10ଽ) =  −66000000 Pa 

=  −66 MPa 
 

3. The bolt and sleeve assembly shown in Figure Q3 is initially tightened so that there is 
no pre-stress at a temperature of 20 °C.  The temperature of the assembly is increased 
to 70 °C.  Determine the total extension of the assembly and the stress in the sleeve 
and the bolt if the bolt is made of steel with a cross-sectional area of 85 mm2 and the 
sleeve of aluminium with a cross-sectional area of 235 mm2. 𝛼 = 11 × 10-6 °C-1 and E 
= 200 GPa for steel and 𝛼 = 23 × 10-6 °C-1 and E = 70 GPa for aluminium. 
[Ans.: extension: 0.084 mm; bolt stress: 59 MPa; sleeve stress: -21 MPa] 
 

 
Figure Q3 

 

For a uniaxial bar  

𝛿𝑙௧௢௧௔௟ = 𝛿𝑙௧௛௘௥௠௔௟ + 𝛿𝑙௠௘௖௛௔௡௜௖௔௟ = 𝑙𝛼𝛥𝑇 +
𝐹𝑙

𝐴𝐸
 

In this case, the total deformation of the sleeve and the bolt must be equal, 
giving  

100mm



MM2MS2 - Mechanics of Solids 2 
Exercise Sheet 3 – Thermal Stress and Strain 

University of Nottingham 
Department of Mechanical Engineering 

𝛿𝑙௕௢௟௧ = 𝛿𝑙௦௟௘௘௩௘ 
or  

𝑙𝛼௕௢௟௧𝛥𝑇 +
𝐹𝑙

𝐴௕௢௟௧𝐸௕௢௟௧
= 𝑙𝛼௦௟௘௘௩௘𝛥𝑇 −

𝐹𝑙

𝐴௦௟௘௘௩௘𝐸௦௟௘௘௩௘
 

As the sleeve must be in compression and the bolt in tension.  
We can cancel through by the length leaving 

𝛼௕௢௟௧𝛥𝑇 +
𝐹

𝐴௕௢௟௧𝐸௕௢௟௧
= 𝛼௦௟௘௘௩௘𝛥𝑇 −

𝐹

𝐴௦௟௘௘௩௘𝐸௦௟௘௘௩௘
  

and rearrange,  

𝐹 =
(𝛼௦௟௘௘௩௘ − 𝛼௕௢௟௧)𝛥𝑇

1
𝐴௦௟௘௘௩௘𝐸௦௟௘௘௩௘

+
1

𝐴௕௢௟௧𝐸௕௢௟௧

= 5016 N 

We can then calculate the overall extensions as  

𝑙𝛼௕௢௟௧𝛥𝑇 +
𝐹𝑙

𝐴௕௢௟௧𝐸௕௢௟௧
= 100 × 11 × 10ି଺ × 50 +

5016 × 100

85 × 200 × 10ଷ
=  0.084 mm 

And the stress in the bolt is  

𝜎௕௢௟௧ =
𝐹

𝐴௕௢௟௧
=

5016

85
=  59 MPa 

 while the stress in the sleeve is  

𝜎௦௟௘௘௩௘ =
−𝐹

𝐴௦௟௘௘௩௘
=

−5016

235
=  −21 MPa 

 
4. The 50-mm-diameter central cylinder shown in Figure Q4 is made from aluminium (𝛼 

= 23 × 10-6 °C-1 and E = 70 GPa) and is placed in the clamp when the temperature is 
T1 = 20° C. If the two steel (𝛼 = 11 × 10-6 °C-1 and E = 200 GPa) bolts of the clamp 
each have a diameter of 10 mm, and hold the cylinder snug with negligible force 
against the rigid jaws at T1, determine the stress in the cylinder when the temperature 
rises to T2 = 100° C.  
 [Ans.: -6.83 MPa] 
 

 
Figure Q4 

 

For a uniaxial bar  

200 mm150 mm
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𝛿𝑙௧௢௧௔௟ = 𝛿𝑙௧௛௘௥௠௔௟ + 𝛿𝑙௠௘௖௛௔௡௜௖௔௟ = 𝑙𝛼𝛥𝑇 +
𝐹𝑙

𝐴𝐸
 

In this case, the total deformation of the cylinder and the bolt must be equal, 
giving 

𝛿𝑙௕௢௟௧ = 𝛿𝑙௦௟௘௘௩௘ 
or  

𝑙𝛼௕௢௟௧௦𝛥𝑇 +
𝐹𝑙

𝐴௕௢௟௧௦𝐸௕௢௟௧௦
= 𝑙𝛼௖௬௟𝛥𝑇 −

𝐹𝑙

𝐴௖௬௟𝐸௖௬௟
 

As the cylinder must be in compression and the bolts in tension. 
Therefore: 

(200 × 10ିଷ) × (11 × 10ି଺) × (100 − 20) +
(200 × 10ିଷ)𝐹

2 × 𝜋 × (5 × 10ିଷ)ଶ × (200 × 10ଽ)

= (150 × 10ିଷ) × (23 × 10ି଺) × (100 − 20)

−
(150 × 10ିଷ)𝐹

𝜋 × (25 × 10ିଷ)ଶ × (70 × 10ଽ)
 

or rearranged  

𝐹 =
(𝑙௖௬௟𝛼௖௬௟ − 𝑙௕௢௟௧௦𝛼௕௢௟௧௦)𝛥𝑇

𝑙௖௬௟

𝐴௖௟௬𝐸௖௬௟
+

𝑙௕௢௟௧௦

𝐴௕௢௟௧௦𝐸௕௢௟௧௦

=
൫(150 × 10ିଷ)(23 × 10ି଺) − (200 × 10ିଷ)(11 × 10ି଺)൯ × 80

(150 × 10ିଷ)
𝜋 × (25 × 10ିଷ)ଶ × (70 × 10ଽ)

+
(200 × 10ିଷ)

2 × 𝜋 × (5 × 10ିଷ)ଶ × (200 × 10ଽ)

= 13409 N 
Therefore the stress in the cylinder and be calculated as  

𝜎௖௬௟ = −
𝐹

𝐴௖௬௟
= −

13409

𝜋 × (25 × 10ିଷ)ଶ
=  −6.83 × 106 Pa =  −6.83 MPa 

 
5. An unrestrained rectangular section aluminium beam with the cross-sectional 

dimensions shown in Figure Q5, has a temperature profile given by: 

𝛥𝑇 = 50 ቆ1 −
4𝑦ଶ

40ଶቇ 

Plot the stress distribution and determine the maximum tensile stress in the bar.  For 
aluminium, 𝛼 = 23x 10-6 °C-1 and E = 70 x 109 GPa. 
[Ans.: 53.7 MPa] 
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Figure Q5 

 
 

Applying axial force equilibrium, as there is no applied external force  

𝑃 = 0 = 𝐸𝜀𝐴̅ − 𝐸𝛼 න 𝛥𝑇𝑑𝐴
 

஺

= 𝐸𝜀𝑏̅𝑑 − 𝐸𝛼 න 50 ቆ1 −
4𝑦ଶ

40
ቇ 𝑑𝐴

ௗ
ଶ

ି
ௗ
ଶ

 

therefore rearranging for the mean strain gives  

𝜀̅ =
50 × (23 × 10ି଺)

40
ቈ𝑦 −

4𝑦ଷ

4800
቉

ି
ௗ
ଶ

ௗ
ଶ

= 2.875 × 10ିହ(13.333 + 13.333)

= 2.875 × 10ିହ × 26.666 = 7.6665 × 10ିସ 
 
From symmetry we can see that 1/R = 0, therefore M = 0 
 
We can then substitute this into the expression for stress  

𝜎௫ = 𝐸(𝜀̅ +
𝑦

𝑅
− 𝛼𝛥𝑇) 

to give us the stress distribution as 

𝜎௫ = 𝐸 ൭7.6665 × 10ିସ + 0 − 𝛼 × 50 × ቆ1 −
4𝑦ଶ

40ଶ
ቇ൱ 

which reduces to  

𝜎௫ = 70 × 10ଷ ቆ7.6665 × 10ିସ − 0.0011 +
0.0044𝑦ଶ

40ଶ
ቇ 

This gives the following stress distribution through the thickness of the beam: 
 

20mm

40mm
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Using the expression in the lecture notes, the value of maximum tensile stress 
can be determined directly using the expression  
 

2𝐸𝛼𝛥𝑇௠௔௫

3
=

2 × 70 × 10ଷ × 50

3
=  53.7 MPa 

as shown at -d/2 and d/2 (20 and -20 mm) in the graph. 
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