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2 SYSTEM CONDITION

1 Introduction

In the previous lecture, we have seen that the finite-volume discretisation of diffusion problems, ir-

rispective of the 1D/2D/3D nature of the problem and of the structured/unstructured grid used, leads

to a system of linear algebraic equations that, in matricial form, can be written as:

A · x = B, (1)

where A is a square n× n matrix, x a n× 1 vector which contains the n unknowns, and B is a n× 1

vector of known elements; n is the number of control volumes employed to discretised the domain.

The solution of the system of equations, Eq. (1), is the task of the linear solver.

Depending on the morphology or regularity of A, e.g. full, band-diagonal, triangular, symmetric,

positive definite, etc. etc., there exist optimal solution algorithms. These can be grouped into:

� Direct methods: compute the solution x1, x2, ..., xn within a finite number of operations.

� Iterative methods: are based on the sequential evaluation of approximate solutions that are

supposed to converge to the exact solution after ∞ iterations.

The scope of this lecture is to outline the most popular direct and indirect methods adopted in

the CFD practice to solve linear systems. We will start with a brief introduction on the desirable

characteristics of the matrix of the coefficients A in Section 2, followed by the explanation of direct

methods in Section 3. Iterative methods will be illustrated in Section 4, which will be followed by a

comparison of direct and iterative methods in Section 5. We will conclude with a tutorial about the

implementation of a direct and an iterative method in Matlab to solve linear systems, in Sec. 6.

2 System condition

There are certain features of the matrix A that make it easier, or impossible, to solve the linear

system. Systems of equations can be classified into three main types:

� Well-conditioned: very small changes in one or more of the coefficients of A result in a very

small or negligible effect on the solution for x. This is the most desirable situation.

� Ill-conditioned: small changes in coefficients result in large changes in the solution. This hap-

pens when two or more of the equations are nearly identical, which means that the determinant

of the matrix is close to zero. This is a very dangereous situation, as it will be explained below.

� Singular: Two or more of the equations are exactly identical (or differ by a constant multiple),

so that the determinant of the matrix is exactly zero. Essentially, this means that we have only

n − 1 (or less) independent equations in our system, whereas the number of variables is still

n. As such, the system is underdetermined and no solution exists, therefore numerical methods

cannot be used for singular systems.

Example 1. Consider the following system of 2 equations:
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2 SYSTEM CONDITION∣∣∣∣∣ 1 2

1.1 2

∣∣∣∣∣ ·
∣∣∣∣∣ x1

x2

∣∣∣∣∣ =
∣∣∣∣∣ 10

10.4

∣∣∣∣∣ ,
The solution can be easily shown to be x1 = 4 and x2 = 3. However, if we change just one

coefficient in the second equation from 1.1 to 1.09, i.e.:∣∣∣∣∣ 1 2

1.09 2

∣∣∣∣∣ ·
∣∣∣∣∣ x1

x2

∣∣∣∣∣ =
∣∣∣∣∣ 10

10.4

∣∣∣∣∣ ,
the solution changes to x1 = 4.444 and x2 = 2.777. If the same coefficient is changed to 1.08, the

solution changes again to x1 = 5 and x2 = 2.5. Therefore, this is an ill-conditioned system since a

small change in one coefficient has a large effect on the solution for x.

Example 2. Consider the following equations:

0.9999x− 1.0001y = 1

x− y = 1,

the solution is x = 0.5 and y = −0.5. If we add a very small number, say β to the right-hand side of

the second equation, the equations become:

0.9999x− 1.0001y = 1

x− y = 1 + β,

and the solution becomes x = 0.5 + 5000.5β and y = −0.5 + 4999.5β. Here, a small change in the

value of β in the right-hand side of one equation results in a change in the solution of approximately

5000 times the value of β. This indicates that the equations are ill-conditioned.

Example 3. Similarly, an ill-conditioned system can be sensitive to changes in the right-hand

side vector B. To demonstrate this, consider the following set of 4 equations:∣∣∣∣∣∣∣∣∣∣∣

10 7 8 7

7 5 6 5

8 6 10 9

7 5 9 10

∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣

x1

x2

x3

x4

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

32

23

33

31

∣∣∣∣∣∣∣∣∣∣∣
.

Assume that the following computed solution is obtained:∣∣∣∣∣∣∣∣∣∣∣

x1

x2

x3

x4

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

6

−7.2

2.0

−0.1

∣∣∣∣∣∣∣∣∣∣∣
.

To check whether this computed solution is acceptable, we evaluate the residual vector:
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3 DIRECT METHODS

R = B−A · x =

∣∣∣∣∣∣∣∣∣∣∣

32

23

33

31

∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣

10 7 8 7

7 5 6 5

8 6 10 9

7 5 9 10

∣∣∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣∣∣

6

−7.2

2.0

−0.1

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

−0.1

0.1

0.1

−0.1

∣∣∣∣∣∣∣∣∣∣∣
.

Since the residual vector R appears to be small, this may indicate that the computed solution is

accurate. However, this is not true, since the exact solution is:∣∣∣∣∣∣∣∣∣∣∣

x1

x2

x3

x4

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

1

1

1

1

∣∣∣∣∣∣∣∣∣∣∣
.

This example demonstrates that even if the residual vector is small, the computed solution may

be inaccurate.

The system condition can be verified beforehand by calculating the condition number of the matrix:

cond(A) = ||A|| · ||A−1||, (2)

where ||A|| is a scalar and is any opportune norm of ||A||. For a well-conditioned system, cond(A)

will be close to 1, whereas for an ill-conditioned system we will have cond(A) ≫ 1.

Ill-conditioned systems represent a danger for the calculation, because any small change of the

coefficient matrix may yield drastically different solutions as shown in examples 1 and 2 (and this will

affect direct methods), and because a small residual vector may not be sufficient to guarantee that

the solution is accurate, as emphasised by example 3 (this will impact indirect methods).

Further reading: Burden and Douglas Faires [1], Ch. 7.5; Chapra and Canale [2], Ch.

9.1.

3 Direct methods

Direct methods for the solution of the linear system of equations A · x = B compute the solution

x1, x2, ..., xn within a finite number of operations. The basic idea is to add or subtract linear combi-

nations of the given equations until (at least) one of the equations contains only one of the unknowns.

This is probably the way you learned to solve linear equations in high school. For example, you

may be already familiar with the Cramer’s rule. Take the system of 3 equations:

a1,1x1 + a1,2x2 + a1,3x3 = b1

a2,1x1 + a2,2x2 + a2,3x3 = b2

a3,1x1 + a3,2x2 + a3,3x3 = b3.
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3 DIRECT METHODS

According to this rule, x1 would be computed as:

x1 =

∣∣∣∣∣∣∣∣
b1 a1,2 a1,3

b2 a2,2 a2,3

b3 a3,2 a3,3

∣∣∣∣∣∣∣∣
det(A)

where the numerator is obtained from A by replacing the column of coefficients of the unknown in

question by the constants b1, ..., bn, and det(A) is the determinant of A. Unfortunately, the number of

operations required by the Cramer’s rule is on the order of n! (factorial of n), for example if n = 100

then the number of operations is ∼ 10157, and thus intractable. For number of operations, we mean the

number of floating-point operations (addition, subtraction, multiplication, division), or flops, involved

in the algorithm, and thus the flops give an idea of the computational expense of the algorithm.

Obviously, there exist more efficient direct methods for solving linear systems, such as the Gauss-

Jordan elimination or the Gaussian elimination; the latter will be treated more in detail in the next

subsection.

3.1 Gaussian elimination

The Gaussian elimination is a very robust algorithm based on the manipulation of A to turn it into

an upper triangular matrix, where the unknowns x1, ..., xn are then obtained by back-substitution.

Let’s start with the coefficient matrix and known terms vector:

A =

∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n
...

...
...

. . .
...

an,1 an,2 an,3 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣
, B =

∣∣∣∣∣∣∣∣∣∣∣

b1

b2
...

bn

∣∣∣∣∣∣∣∣∣∣∣
.

Forward elimination

First, we eliminate the first unknown x1 from the second to the n-th equation by subtracting the

first equation, multiplied by ai,1/a1,1, from each i-th (i ≥ 2) equation, so that each i-th equation (from

the second on) is replaced by:

ai,1x1 + ai,2x2 + · · ·+ ai,nxn − ai,1
a1,1

(a1,1x1 + a1,2x2 + · · ·+ a1,nxn) = bi −
ai,1
a1,1

b1,

where you can see that x1 cancels out. We refer to the first equation as the pivot equation, and to a1,1

as the pivot element. After sweeping all the i = 2, ..., n rows, A and B become:

A(1) =

∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 · · · a1,n

0 a2,2 − a2,1
a1,1

a1,2 a2,3 − a2,1
a1,1

a1,3 · · · a2,n − a2,1
a1,1

a1,n
...

...
...

. . .
...

0 an,2 − an,1

a1,1
a1,2 an,3 − an,1

a1,1
a1,3 · · · an,n − an,1

a1,1
a1,n

∣∣∣∣∣∣∣∣∣∣∣
, B(1) =

∣∣∣∣∣∣∣∣∣∣∣

b1

b2 − a2,1
a1,1

b1
...

bn − an,1

a1,1
b1

∣∣∣∣∣∣∣∣∣∣∣
,

and the first column of A under the first row now contains only zeros. We call A(1) and B(1) the

new coefficient matrix and known terms vector obtained after this first set of operations.
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3 DIRECT METHODS

Now, we eliminate the second unknown x2 from the third to the n-th equation by subtracting the

second equation, multiplied by a
(1)
i,2 /a

(1)
2,2, from each i-th (i ≥ 3) equation, so that each i-th equation

(from the third on) is replaced by:

a
(1)
i,2x2 + a

(1)
i,3x3 + · · ·+ a

(1)
i,nxn −

a
(1)
i,2

a
(1)
2,2

(
a
(1)
2,2x2 + a

(1)
2,3x3 + · · ·+ a

(1)
2,nxn

)
= b

(1)
i −

a
(1)
i,2

a
(1)
2,2

b
(1)
2 ,

where you can see that x2 cancels out. Thus, the pivot equation is now the second, and the pivot

element is a2,2. After sweeping all the i = 3, ..., n rows, A becomes:

A(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 · · · a1,n

0 a
(1)
2,2 a

(1)
2,3 · · · a

(1)
2,n

0 0 a
(2)
3,3 · · · a

(2)
3,n

...
...

...
. . .

...

0 0 a
(2)
n,3 · · · a

(2)
n,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where now the second column, under the second row, contains only zeros. The same procedure is

repeated N − 1 times, when A(N−1) has become an upper triangular matrix:

A(N−1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(N−1)
1,1 a

(N−1)
1,2 a

(N−1)
1,3 a

(N−1)
1,4 a

(N−1)
1,5 · · · a

(N−1)
1,n

0 a
(N−1)
2,2 a

(N−1)
2,3 a

(N−1)
2,4 a

(N−1)
2,5 · · · a

(N−1)
2,n

0 0 a
(N−1)
3,3 a

(N−1)
3,4 a

(N−1)
3,5 · · · a

(N−1)
3,n

0 0 0 a
(N−1)
4,4 a

(N−1)
4,5 · · · a

(N−1)
4,n

0 0 0 0 a
(N−1)
5,5 · · · a

(N−1)
5,n

...
...

...
...

...
. . .

...

0 0 0 0 0 · · · a
(N−1)
n,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Note that, for simplicity in the notation, all the superscipts have been turned into N−1 to indicate

that they refer to the values at the end of the last forward step.

Backward substitution

Now, from our original linear system A ·x = B, we have a new system A(N−1) ·x = B(N−1), which

is much easier to solve because, starting from the n-th row:

a(N−1)
n,n xn = b(N−1)

n ⇒ xn =
b
(N−1)
n

a
(N−1)
n,n

,

for the line n-1:

a
(N−1)
n−1,n−1xn−1 + a

(N−1)
n−1,n xn = b

(N−1)
n−1 ⇒ xn−1 =

b
(N−1)
n−1 − a

(N−1)
n−1,n xn

a
(N−1)
n−1,n−1

,

and so on, e.g. for the i-th line:

xi =

b
(N−1)
i −

n∑
k=i+1

a
(N−1)
i,k xk

a
(N−1)
i,i

.
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3 DIRECT METHODS

Example. Consider the following system with 3 equations:∣∣∣∣∣∣∣∣
2 1 −1

1 3 2

1 −1 4

∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣
x1

x2

x3

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

1

13

11

∣∣∣∣∣∣∣∣ .
From the second and third rows, subtract the first row multiplied by ai,1/a1,1:∣∣∣∣∣∣∣∣
2 1 −1

0 2.5 2.5

0 −1.5 4.5

∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣
x1

x2

x3

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

1

12.5

10.5

∣∣∣∣∣∣∣∣ .
From the third line, substract the second multiplied by a3,2/a2,2:∣∣∣∣∣∣∣∣
2 1 −1

0 2.5 2.5

0 0 6

∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣
x1

x2

x3

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

1

12.5

18

∣∣∣∣∣∣∣∣ ,
which, by back-substitution starting from the third line, yields x3 = 3, x2 = 2 and x1 = 1.

The main characteristics of the Gaussian elimination are:

� The method is very reliable, it always calculates a solution (if a solution exists).

� It can be demonstrated (Chapra and Canale [2], Sec. 9.2.1) that the number of operations is

proportional to n3.

� Owing to the large number of operations done on the coefficients of the matrix A, direct methods

suffer from round-off errors. Round-off errors originate from the fact that computers retain only

a fixed number of significant figures during a calculation. The discrepancy introduced by this

omission of significant figures is called round-off error. If the number of calculations is small,

round-off errors can be ignored. However, if the number of equations is very large, the number

of multiplication and division operations dramatically increases, and in some situations (such as

in ill-conditioned matrices, see below) can cause a serious deterioration in accuracy. As a general

rule of thumb, round-off errors become important when the number of equations exceeds 100

equations.

� Ill-conditioned systems pose particular difficulties. Remember that in ill-conditioned systems,

small changes in coefficients result in large changes in the solution (Section 2). Therefore,

round-off errors may introduce errors in A while this is being manipulated during the forward

ellimination process, and if A is ill-conditioned these errors may result in large changes in the

solution. Round-off errors are impactful when a pivot element is very close to zero, owing to the

division by the pivot element during the process of elimination. The remedies to avoid this are

pivoting, that is, to switch the rows so that the largest element is the pivot element, and scaling,
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3 DIRECT METHODS

that is, normalise each row by scaling all the coefficients in a given row by dividing them by the

largest coefficient in the row, i.e. the largest coefficient becomes equal to 1.

� The matrix of the coefficients A needs to be entirely stored, also including the zero elements,

thus requiring a space in the memory proportional to n2.

� Given the number of operations required to reduce A to an upper triangular matrix, the algo-

rithm for the Gaussian elimination is more complex to program than those for iterative methods.

Further reading: Chapra and Canale [2], Ch. 9.

3.2 The Tri-Diagonal Matrix Algorithm (TDMA)

In the case where A is a tridiagonal matrix, which we have seen to happen when discretising the 1D

diffusion equation in the previous lecture, the Gaussian elimination method turns into a convenient

and efficient algorithm, with the number of operations being proportional to n instead of n3.

Let’s the denote the generic discretisation equation for the i-th node as:

aiTi = biTi+1 + ciTi−1 + di (3)

where i = 1, ..., n. The notation is chosen in agreement with that in Patankar [4], Ch. 4.2.7, re-

membering our previous notation: ai ≡ ai,P ≡ ai,i, bi ≡ −ai,E ≡ −ai,i+1, ci ≡ −ai,W ≡ −ai,i−1 and

di ≡ bi. Since the leftmost boundary control volume has no west neighbour, we have c1 = 0; since the

rightmost boundary control volume has no east neighbour, we have bn = 0.

During the forward elimination procedure, we can write:

CV1) a1T1 = b1T2 + d1 ⇒ T1 =
b1T2 + d1

a1
= P1T2 +Q1, withP1 =

b1
a1

, Q1 =
d1
a1

, (4)

where P1 and Q1 only include known coefficients. Then:

CV2) a2T2 = b2T3 + c2

T1︷ ︸︸ ︷
(P1T2 +Q1)+d2 ⇒ T2 =

b2T3 + c2Q1 + d2
a2 − c2P1

= P2T3 +Q2,

withP2 =
b2

a2 − c2P1
, Q2 =

c2Q1 + d2
a2 − c2P1

, (5)

where P2 and Q2 only include known or previously calculated coefficients. Then:

CVi) aiTi = biTi+1+ciTi−1+di ⇒ Ti = PiTi+1+Qi, withPi =
bi

ai − ciPi−1
, Qi =

ciQi−1 + di
ai − ciPi−1

, (6)

where, in general, Pi multiplies the forward unknown (Ti+1) and Qi is a known term. Note that both

Pi and Qi only include known or previously calculated coefficients. Finally, since there is no forward

term for the rightmost control volume:

CVn) Tn = Qn, withQn =
cnQn−1 + dn
an − cnPn−1

, (7)
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4 ITERATIVE METHODS

where Qn only includes known or previously calculated coefficients, and this can be used to evaluate

Tn and start the back substitution procedure:

Tn = Qn ⇒ Tn

Tn−1 = Pn−1Tn +Qn−1 ⇒ Tn−1

Ti = PiTi+1 +Qi ⇒ Ti

T1 = P1T2 +Q1 ⇒ T1

In summary, an outline of the algorithm is:

1. Calculate P1 and Q1;

2. Calculate all the other Pi and Qi in ascending order (i = 2, ..., n− 1);

3. Calculate Qn and set Tn = Qn;

4. Calculate all the other Ti in descending order (i = n− 1, ..., 1).

In worked example 2, see Section 6.2, we will see how to implement the TDMA algorithm in Mat-

lab to solve the linear system of Worked example 2 of the previous lecture, thus replacing Matlab’s

backslash operator.

The TDMA algorithm can be easily extended to solve the penta- and epta-diagonal matrices arising

from 2D and 3D diffusion problems with structured meshes, although the algorithm becomes partially

iterative. Further reading: Patankar [4], Sec. 4.2.7; Versteeg and Malalasekera [5], from Sec. 7.2 to

Sec. 7.5.

4 Iterative methods

Iterative methods for the solution of the linear system of equations A · x = B start with an initial

guess for the solution and use the algebraic equations to systematically improve it, until the solution

is sufficiently close to the correct solution of the algebraic equations.

Be A ·x = B the system that we want to solve, with x being the exact solution. After m iterations,

we have an approximate solution x(m) which does not satisfy these equations exactly. Instead, there

is a nonzero residual R(m) such that:

A · x(m) = B−R(m), (8)

and an error vector:

e(m) = x− x(m). (9)

The iterative procedure is successful if bothR and e go to zero as the number of iterations increases.

In practice, however, the iterative procedure is arrested when the residuals fall below a certain (small)

tolerance, because the exact solution of the system would require an infinite number of iterations.

Therefore, an important difference with the direct methods is that iterative methods always find an

10



4 ITERATIVE METHODS

approximate solution x that solves the system A · x = B within a certain tolerance, but not exactly

(as direct methods, at least in principle, do).

The main characteristics of iterative methods are:

� The number of operations is proportional to n×m, but the number of iterations m is not kwown

beforehand.

� Convergence of the method is not guaranteed, as we will see in the next section.

� There is no need to store the entire matrix A if this is sparse and contains many zeros, only the

nonzero elements can be stored, thus occupying a minimal memory storage of order n.

� For non-linear problems with a large and sparse matrix (typical CFD case), they are preferable

to direct methods because they are less computationally expensive and require less storage.

� Round-off errors are insignificant, because A and B are not manipulated during the solution

procedure and the final iteration may be regarded as an initial guess.

� They are much easier to implement than direct methods.

The most popular iterative method is the Gauss-Seidel method, which is reviewed in detail in the

next section.

Further reading: Ferziger and Peric [3], Sec. 5.3.

4.1 The Gauss-Seidel iterative method

In the Gauss-Seidel method, at each m-th iteration, the equations are solved sequentially from the

1-st to the n-th, using guess values for the non-i-th unknowns of each i-th equation:

ai,1x1 + . . .+ ai,ixi + . . .+ ai,nxn = bi ⇒ xi =
bi
ai,i

−
n∑

j=1,j ̸=i

ai,j
ai,i

x∗j , (10)

where the asterisk denotes the guess values. What distinguishes the Gauss-Seidel method from other

iterative methods is that the guess values are the most recently available values:

x∗j =

x
(m)
j , if j < i

x
(m−1)
j , if j > i

so that at each m-th iteration, the i-th unknown can be obtained using the following formula:

x
(m)
i =

bi
ai,i

−
i−1∑
j=1

ai,j
ai,i

x
(m)
j −

n∑
j=i+1

ai,j
ai,i

x
(m−1)
j . (11)

In worked example 1, see Section 6.1, we will see how to implement the Gauss-Seidel algorithm in

Matlab to solve the linear system of Worked example 2 of the previous lecture.
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Example. Consider the system of equations:

x1 = 0.4x2 + 0.2

x2 = x1 + 1,

and use the Gauss-Seidel method with initial guess (0, 0) to iteratively solve the system with an

accuracy up to the 2nd decimal.

m 0 1 2 3 4 5 6 7

x1 0 0.2 0.68 0.872 0.949 0.98 0.992 0.997

x2 0 1.2 1.68 1.872 1.949 1.98 1.992 1.997

We can see that, while we use the previous iteration values for x2 when we solve the first equation

for x1, when we solve the second equation for x2 we actually use the newer values for x1, and not

those of the previous iteration, in line with Eq. (11). We can see that the system is solved within the

required tolerance with 7 iterations, with the approximate solution being close to the correct solution,

x1 = 1 and x2 = 2.

An important, negative aspect of iterative methods is that convergence to the correct solution is

not guaranteed, as this depends on the form of the coefficient matrix. Let’s simply rearrange the two

equations above in the following form:

x1 = x2 − 1

x2 = 2.5x1 − 0.5.

The correct solution is still x1 = 1 and x2 = 2, however if we repeat the same iterative procedure as

before, this diverges:

m 0 1 2 3 4 5 · · · ∞
x1 0 -1 -4 -11.5 -30.25 -77.13 · · · divergence

x2 0 -3 -10.5 -29.25 -76.13 -193.32 · · · divergence

So, how can we make sure that the iterative solution will converge? There exists a sufficient

condition for the convergence of the Gauss-Seidel method, called Scarborough criterion, which states

that the method converges if:

Si =

n∑
j=1,j ̸=i

|ai,j |

|ai,i|
=

≤ 1, for all equations

< 1, for at least one equation
(12)

If we apply this criterion to the first set of equations (where the method was converging), for

the first equation we obtain S1 = |a1,2|/|a1,1| = | − 0.4|/|1| = 0.4 and for the second equation

S2 = |a2,1|/|a2,2| = | − 1|/|1| = 1, and thus the criterion is satisfied because Si ≤ 1 for each equation

and Si < 1 for at least one equation (the first). However, for the second set of equations (where the

method diverges), we obtain S1 = |a1,2|/|a1,1| = |−1|/|1| = 1 and S2 = |a2,1|/|a2,2| = |−2.5|/|1| = 2.5,

where now S2 > 1 and the criterion is not satisfied. Therefore, divergence was expected. For a system

12
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with a larger number of equations, the numerator of Eq. (12) represents the sum of the absolute values

of the off-diagonal elements of the i-th row of the matrix, whereas the denominator is the diagonal

element. In short, the criterion requires that the coefficients on the diagonal are larger than those

off-diagonal, which is a property often referred to as diagonal dominance. Therefore, in order for the

Gauss-Seidel method to converge, the coefficient matrix A must be diagonally dominant.

Further reading: Patankar [4], Sec. 4.4.3; Chapra and Canale [2], Sec. 11.2; Versteeg and

Malalasekera [5], Sec. 7.6.

4.2 Solution relaxation

In iterative methods, the rate of change of the solution from one iteration to the following one can be

controlled by introducing a relaxation factor that can either slow down (under-relaxation) or speed-up

(over-relaxation) the convergence. Let’s rewrite the generic iteration equation, Eq. (10), as follows:

x
(m)
i =

bi
ai,i

−
n∑

j=1,j ̸=i

ai,j
ai,i

x∗j = x
(m−1)
i +

 bi
ai,i

−
n∑

j=1

ai,j
ai,i

x∗j

 , (13)

where x
(m−1)
i is the value at the previous iteration and the term between square brackets identifies

the rate of change of xi from the previous to the new iteration. We can control this rate of change by

introducing the relaxation factor ω:

x
(m)
i = x

(m−1)
i + ω

 bi
ai,i

−
n∑

j=1

ai,j
ai,i

x∗j

 , (14)

where:

� ω > 1 identifies over-relaxation. This speeds-up the otherwise slow convergence rate of iter-

ative methods, however it makes the algorithm more at risk of divergence. ω should never be

above 2.

� ω < 1 identifies under-relaxation. This slows down changes thus stabilizing the iterative

procedure, and it is sometimes necessary when solving a system of nonlinear equations, where

the coefficients of the matrix depend on the values of x.

Note that the best value of ω which guarantees convergence with a minimum number of iterations

is problem-dependent and it is not known beforehand.

Further reading: Patankar [4], Sec. 4.5; Chapra and Canale [2], Sec. 11.2.2; Versteeg and

Malalasekera [5], Sec. 7.6.3.

4.3 Convergence criteria for iterative methods

In this section we see some criteria that we can use to decide when the iterative procedure for the

solution is to be arrested. Bear in mind that we do not know the exact solution and therefore we can

use it to estimate how far we are from it.
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� Absolute iteration error:

|δ(m)| = |x(m) − x(m−1)| < tol. (15)

It arrests the procedure when the rate of solution change is below a tolerance, but there is no

indication that we are converging to the correct solution.

� Scaled iteration error:

|δ(m)|
|x(m−1)|

< tol. (16)

Rescales the iteration error to make it nondimensional, that is, independent of the scale of the

problem.

� Absolute residuals:

|R(m)| = |B−A · x| < tol. (17)

Indicates how far are we from the exact solution of the linear system.

� Scaled residuals:

|R(m)|
|diag(A) · x|

< tol. (18)

Rescales the residual error to make it nondimensional.

� Scaled residuals (alternative):

|R(m)|
|R(1)|

< tol. (19)

Rescales the residual error with the error after the 1st iteration, thus indicating how much has

the solution improved since the beginning of the iterative process.

Note that we had already seen the scaled residuals when discussing the indicators of the accuracy of the

numerical solution in Section 9 of Lecture 1. Although they are calculated in the same way, the concept

is different. Those of Lecture 1 were used to judge the solution accuracy and did apply irrespective of

the solution method (direct/iterative). Those defined in this section refer to the threshold applied to

arrest the iterative solution. Of course, once the iterative solution is arrested, the final residual error

becomes an indicator of the numerical accuracy of the solution.

5 Direct vs iterative methods

We are now ready to outline a short summary of the pros and cons of direct and iterative methods:

14
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6 Matlab tutorials: Implementation of the Gauss-Seidel and TDMA

algorithms to solve a linear system

6.1 Worked example 1: Gauss-Seidel algorithm

Repeat the exercise of Worked example 2 of lecture 1 (finite-volume, 1D steady heat conduction,

Dirichlet boundary conditions, nonzero source term) but, instead of using Matlab’s backslash operator

T = A \B to solve the linear system, implement the Gauss-Seidel iterative method. Suggestions:

� Implement the Gauss-Seidel method as a Matlab function; this will keep your code clean and

will enable you to reuse the method to solve other exercises.

� As initial guess, it is reasonable to start with T = Ta in all the nodes of the domain.

� As a convergence criterion, you can use the scaled residuals (Sec. 4.3), with a tolerance of

tol = 1e− 12.

� Set a max number of iterations allowed, e.g. 10000, to avoid the solver to run forever in the case

of divergence.

Solution

We can use the same Matlab code that we have developed in Worked example 2 of Lecture 1, take a

look at the code snippets in the notes for L1. We will add another piece of code to solve the linear

system once again, but now using the Gauss-Seidel method, and we will compare the solution error

and residuals with those obtained using the backslash operator.
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It is suggested to code the Gauss-Seidel method as a Matlab function, in order to keep your code

tidy and to enable you to reuse the linear solver in any other exercise. In the main code, a Matlab

function is called as follows (type help function on the command window for further info):

[output1,output2,...]=functionName(input1,input2,...);

where the functionName can be any name. Then, you need to define the function as another Matlab

.m file, to be placed in the same folder as your main file, and make sure to name it functionName.m,

otherwise Matlab will not be able to link the function call to the function algorithm.

Our Gauss-Seidel function will need to take the following steps:

1. Receive the initial guess, matrices A and B, max number of iterations and tolerance as input.

2. Start a loop where, while the residuals are above the tolerance and the number of iterations

are below the max allowed number, at each iteration the equations are solved in sequence, from

i = 1 to i = n, using the iteration equation Eq. (11).

3. At the end of each iteration, update the values of the residuals.

4. Once any of the criteria for arresting the procedure are met, return the solution to the main code,

and possibly also return the history of the residuals and the number of iterations as outputs, so

that you can track how the iterative procedure developed.

The matlab code that we can add to the main script that we wrote in Worked example 2 of Lec-

ture 1 is as follows:

Lines 1-40 are unchanged, see Worked example 2 of Lecture 1; we add the solution with the

Gauss-Seidel algorithm in lines 42-52. Lines 43-45 set the max number of iterations, the tolerance on

the residuals, and the initial guess vector for each nodes value of the temperature. Line 46 calls the

function GaussSeidel, that will need to be defined, which takes as input the initial guess, matrices A

and B, max number of iterations and tolerance, and yields as output the solution vector, the number

of iterations to reach convergence, and the residuals; the residuals will be returned as a vector which

contains the residuals at each iteration, so that you can track the convergence history and make sure

that the tolerance is respected. We plot the solution in line 47, comparing it with the exact solution
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and that provided by the backslash operator. We output the solution error and the final residual

value to the command window in lines 49-50. In lines 51-52, we plot the convergence history of the

residuals.

The function is defined as another file named GaussSeidel.m, which will look like:

and that we will save in the same folder. In line 1, the input and output variables are defined.

Note that the names of the variables do not need to match the names used in the main Matlab script,

as the variables defined within the function will “exist” only in the function. However, the order of

the calls is important, and the order of the multiple inputs and outputs must be the same as that

in the main file. In short, Matlab does not care about the names of the input/output variables,

but cares about the order in which they are called. In line 2, we evaluate a starting value of the

residuals, based on the initial guess of temperature. In line 3, we initialize the number of iterations

to zero. Then, line 5 starts the loop of the iterations, which will run while the redisuals are above

the tolerance and the number of iterations are below the limit value that we set. When any of these

two conditions is no longer satisfied, the loop terminates. In line 6, we update the iteration number.

The for cycle in lines 7-10 is the core of the algorithm. Line 8 implements exactly the same equation

as that in Eq. (11): A(i,1:i-1)/A(i,i)*x(1:i-1) performs the sum from j = 1 to j = i − 1,

whereas A(i,i+1:end)/A(i,i)*x(i+1:end) performs the sum from j = i + 1 to j = n. Note that,

automatically, the guess values of x(1:i-1) will be the most up-to-date values (iteration m), whereas

the guess values x(i+1:end) will be those of the previous iteration (m − 1), because the for loop

has not yet updated them. Line 9 does the same job as line 8, but writes the iteration equation in a

more compact form. Finally, in line 11 the scaled residuals are calculated and placed in a vector that

contains the residuals for each iteration.

The results are displayed in Fig. 1. You can see that there seem to be no difference between the two

numerical solutions and the exact one, in fact the command window output of the error gaussSeidel

is the same as that obtained when using the backslash operator. The residual history shows that

residuals convergence to the set tolerance in about 750 iterations, and this is confirmed by the last

command window output that reports the residuals after the final iteration. As expected, the reported

value of 9.7755e-13 is below the set tolerance of toll=1e-12.
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(a) (b) (c)

Figure 1: Worked example 1: (a) Comparison of theoretical and numerical solutions, (b) convergence

history of the residuals and (c) output on the command window

6.2 Worked example 2: TDMA algorithm

Repeat the previous exercise, now solving the linear system with the TDMA algorithm, to be imple-

mented as a function in Matlab.

Solution

The implementation of the TDMA algorithm can be done by following the pseudo-code outlined at

the end of Sec. 3.2. We will need to write a function that takes A and B as inputs, and uses these to

perform the steps outlined in Sec. 3.2. Let’s recall here the generic discretisation equation for the i-th

node used to develop the TDMA in Sec. 3.2:

aiTi = biTi+1 + ciTi−1 + di, (20)

where i = 1, ..., n. The same equation can be written using our usual double-index notation for A, as

done in Sec. 4.5 of Lecture 1:

ai,i−1Ti−1 + ai,iTi + ai,i+1Ti+1 = bi. (21)

Therefore, we need to be careful when “translating” the coefficients from the nomenclature in Eq. (20)

to that used in the Matlab code, which is more similar to that in Eq. (21). Specifically, the “translation”

from (20) to (21) is as follows:

ai → ai,i, bi → −ai,i+1, ci → −ai,i−1, di → bi. (22)

Starting from the matlab main code developed in the previous worked example, we add:
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where the TDMA algorithm is called with a function. Note that, because the TDMA algorithm is

a direct method, there is no need to pass as input the initial guess, max iteration number, or residual

tolerance, because no iterations will be performed; therefore, we only need to pass A and B. The rest

of the main code should be straightforward.

We will need to create a new Matlab file called TDMA.m where we will write the function, to be

placed in the same folder as the main file. The function may look like this:

In line 3 we set the number of equations, that was not directly passed but can be extracted as the

length of the known terms vector. The rest of the function follows exactly the pseudo-code outlined

at the end of Sec. 3.2. In lines 5 and 6 we calculate P1 and Q1 according to Eq. (4), take a look at

the “translations” in Eq. (22) if necessary. Then, the for loop in lines 9-12 evaluates the Pi and Qi
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(a) (b)

Figure 2: Worked example 2: (a) Comparison of theoretical and numerical solutions and (b) output

to the command window.

in ascending order from i = 2 to i = n− 1 according to Eq. (6), while we put i = n outside the loop

because Pn = 0 and line 10 would not work. We evaluate Qn in line 16 and set Tn = Qn in line 17.

We perform the back substitutions in lines 20-22, now in descending order from i = n − 1 to i = 1.

In line 24 we transpose the solution vector to turn it into a column vector, which is required owing to

the formula used for the residuals in line 25.

The output of the algorithm is shown in Fig. 2. It can be seen that the TDMA performs well,

giving the same deviation with the exact solution as the backslash operator or Gauss-Seidel algorithm.

The residuals are of the same order of magnitude as those observed when using the backslash operator.

6.3 Suggested exercises

1. Repeat Worked example 1 and add over-relaxation to the Gauss-Seidel method (Sec. 4.2) with

ω = 1.1, 1.2, ..., 2, and look at the number of iterations necessary for convergence.

2. Repeat Worked example 1 and test different values of the number of control volumes n, for

example n = 10, 20, 50, 100, 500, 1000, 5000, and see how the number of iterations in Gauss-

Seidel method changes with n. Note that you will need to increase the max number of iterations

allowed when n is large. You can also keep track of the time that it takes to solve the linear

system each time, using Matlab’s tic-toc function. In the main Matlab code of Worked example

1, simply add tic before line 46 and time=toc after line 46. This will write in the variable time

the time necessary to perform the calculations between the tic and toc commands, measured

in seconds.

3. Compare the time it takes (using Matlab’s tic-toc function) to solve the linear system using

(i) backslash, (ii) Gauss-Seidel and (iii) TDMA, when varying the number of grid nodes from a

small value (n = 10) to a large value, e.g. n = 5000 or above, according to the available power

of your computer.
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