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1. (a) Solve the equation

d
2𝑦

d𝑥2 − 9
d𝑦
d𝑥 + 20𝑦 = 2e3𝑥,

subject to the initial conditions 𝑦(0) = 3 and 𝑦′(0) = 12. [9 marks]

(b) Find the general solution of the coupled equations
d𝑥
d𝑡 = 2𝑥 + 𝑦
d𝑦
d𝑡 = sin 𝑡 − 2𝑥.

[11 marks]

2. The fully-rectified cosine wave is defined by

𝑓(𝑥) = | cos𝑥|.

(a) Sketch a graph of 𝑓(𝑥) for −2𝜋 < 𝑥 < 2𝜋.
[3 marks]

(b) What is the shortest period of 𝑓(𝑥)?
[2 marks]

(c) Find the Fourier series for 𝑓(𝑥).
Hint:

cos𝐴 cos𝐵 = 1
2 cos(𝐴 + 𝐵) + 1

2 cos(𝐴 − 𝐵).

[9 marks]

(d) State what values the Fourier series converges to when (i) 𝑥 = 0 and (ii) 𝑥 = 𝜋/2.
[2 marks]

(e) Hence evaluate the sum

𝑆 = 1
1.3 −

1
3.5 +

1
5.7 −

1
7.9 +⋯ =

∞
∑
𝑛=1

(−1)𝑛−1

(2𝑛 − 1)(2𝑛 + 1)
.

[4 marks]

3. The function 𝑓(𝑡) is defined by

𝑓(𝑡) = (𝑡 − 1)𝐻(𝑡 − 1),

where 𝐻 denotes a Heaviside step function.

(a) Sketch a graph of 𝑓(𝑡) for 𝑡 > 0.
[3 marks]

(b) Find the Laplace transform ̄𝑓(𝑠) of 𝑓(𝑡).
[3 marks]

(c) The function 𝑦(𝑡) satisfies the differential equation

d2𝑦
d𝑡2 −

d𝑦
d𝑡 = 𝑓(𝑡)

and the initial conditions

𝑦(0) = 1 and 𝑦′(0) = 0.

Find its Laplace transform ̄𝑦(𝑠). [6 marks]

(d) Hence find 𝑦(𝑡). [8 marks]
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4. The function 𝜑(𝑥, 𝑡) satisfies the partial differential equation

𝜕2𝜑
𝜕𝑥2 −

𝜕2𝜑
𝜕𝑡2 = 𝜑, for 0 < 𝑥 < 𝐿 and 𝑡 > 0. (1)

(a) Show that an appropriate separation of variables substitution leads to equations of the form

𝑋″(𝑥) + 𝜆𝑋(𝑥) = 0
𝑇″(𝑡) + 𝜆′𝑇(𝑡) = 0,

where 𝜆 and 𝜆′ are constants, and state the relationship between 𝜆 and 𝜆′.
[5 marks]

(b) Given that the only solutions of interest are such that 𝜆 > 0, find the general forms of the corresponding

solutions 𝑋(𝑥) and 𝑇(𝑡).
[4 marks]

(c) Find the most general solution of (1) consistent with the boundary conditions

𝜑(0, 𝑡) = 0 = 𝜑(𝐿, 𝑡) for 𝑡 > 0.

[6 marks]

(d) Find the solution of (1) when initial conditions are imposed in the form of the following Fourier series

𝜑(𝑥, 0) = 0 and 𝜑𝑡(𝑥, 0) =
∞
∑
𝑛=1

(−1)𝑛

𝑛4 sin (𝑛𝜋𝑥𝐿 ) , for 0 < 𝑥 < 𝐿,

where 𝜑𝑡 denotes a partial derivative of 𝜑 with respect to 𝑡.
[5 marks]

5. (a) For events 𝐴 and 𝐵 it is known that 𝑃(𝐴) = 0.32, 𝑃(𝐵) = 0.67 and 𝑃(𝐴 ∪ 𝐵) = 0.84.
i) Find the probability that both 𝐴 and 𝐵 occur.

ii) Find the probability that neither 𝐴 nor 𝐵 occur.

iii) Find the conditional probability of 𝐵, given that 𝐴 occurs.

[6 marks]

(b) If the number of customers who arrive in a shop in 30-minute intervals follows a Poisson distribution

with mean 3, independently over consecutive intervals, calculate

i) the probability that no customers arrive in a given 30-minute period;

ii) the probability that at least 2 customers arrive in a given 30-minute period;

iii) the probability that no customers arrive over a 1-hour period.
[7 marks]

(c) A wall is made by stacking 3 bricks, separated by two layers of mortar. The bricks are taken from

a batch in which heights can be modelled by a normal distribution with mean 20 cm and standard

deviation 1 cm. A survey of bricklayers working on the project shows that they lay mortar with an

thickness that can be modelled by a normal distribution with a mean of 1.5 cm and standard deviation

3 mm.

i) What probability distribution describes the height of the wall?

ii) What is the probability that the height of the wall exceeds 65 cm?

[4 marks]

(d) Determine a 95% confidence interval for the mean melting point of a new alloy based on 100 tests

yielding a mean 621.54 and sample variance 1.41 (with measurements in ∘𝐶).
[3 marks]
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